首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel polystyrene microsphere (PSMS)-based PSMS/Si and polystyrene/silica nanoparticle/multi-walled carbon nanotube (PS/Si/MWCNT) nanocomposite has been prepared using in situ sol-gel and chemical amalgamation methods. Aniline monomer was introduced by in situ route to form PSMS/PANI, PSMS/PANI/Si and PSMS/PANI/Si/MWCNT nanocomposite. FESEM of nanocomposite indicated core-shell spherical and tubular morphology. Glass transition temperature (Tg) and maximum decomposition temperature (Tmax) of PSMS/PANI/Si/MWCNT nanocomposite were found as 295°C and 524°C, respectively, which were higher than the PSMS/PANI (Tg = 245°C; Tmax = 387°C) and PSMS/PANI/Si (Tg = 257°C; Tmax = 388°C) nanocomposite. For nanocomposite dispersion, tetrahydrofuran was studied as fine solvent. XRD depicted amorphous nature of PSMS/Si and PSMS/PANI/Si; however MWCNT reduced amorphous character of PSMS/PANI/Si/MWCNT. Electromagnetic interference (EMI) shielding effectiveness improved from 0.1 dB (PSMS) to 12.3 dB (PSMS/PANI/Si) to 24.5 dB (PSMS/PANI/Si/MWCNT). The increase in EMI shielding effectiveness was also observed with variation in log of conductivity from ?14 mho m?1 (PSMA) to 1.17 mho m?1 (PSMS/PANI/Si/MWCNT).  相似文献   

2.
Four unsymmetric as well as symmetric carbazole or oxadiazole modified pyran-containing compounds have been synthesized and characterized. These compounds are 4-(dicyanomethylene)-2-methyl-6-(4-(carbazolo-9-yl)phenyl)-4H-pyran (10), 4-(dicyanomethylene)-2,6-bis(4-(carbazolo-9-yl)phenyl)-4H-pyran (11), 4-(dicyanomethylene)-2-methyl-6-(4-tert-phenyl)-1,3,4-oxdiazole-4-phenyl)-4H-pyran (12), and 4-(dicyanomethylene)-2,6-bis(4-tert-phenyl)-1,3,4-oxdiazole-4-phenyl-4H-pyran (13). Photoluminescent measurements indicated that their maximal emissions can be tuned from 543 to 590 nm in acetone solution. Electroluminescent studies based on these compounds as dopants resulted in greenish yellow light emission. It was found that the device based on the bis-condensed symmetric compound (11) with the configuration of indium tin oxide / Copper (II) phthalocyanine (5 nm) / N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (40 nm) / compound (11) : tris-(8-quinolinolato)aluminium (Alq3) (1%) (30 nm) / 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (5 nm) / Alq3 (40 nm) / Mg : Ag (9 : 1) (200 nm) / Ag (80 nm) has achieved the highest luminance (6869 cd/m2) and efficiency (1.32 lm/W and 2.52 cd/A) among the four emitters.  相似文献   

3.
We present a method for the determination of orientation-dependent mobilities Γeff(φ) based upon analyses of the detachment-limited coarsening/decay kinetics of equilibrium-shaped two-dimensional islands. An exact analytical expression relating the orientation-dependence of Γeff(φ) to that of the anisotropic step energies β(φ) is derived. This provides relative values of Γeff(φ) to within an orientation-independent scale factor that is proportional to the decay rate of the island area. Using in situ high temperature (T = 1550–1700 K) low-energy electron microscopy measurements of two-dimensional TiN island coarsening/decay kinetics on TiN(111) terraces for which β(φ) values are known [Phys. Rev. B 67 (2003) 35409], we demonstrate the applicability of our analytic formulation for the determination of absolute Γeff(φ) values.  相似文献   

4.
Novel buckypaper of polyvinyl chloride (PVC) and poly(styrene-co-maleic anhydride) (PSMA) intercalated with carbon nanotube (CNT) and graphene oxide-CNT (GO-CNT) nanobifiller was prepared using resin infiltration technique. Two series of buckypaper were prepared with varying CNT and GO-CNT contents. According to field emission scanning electron microscopy, PVC/SMA/CNT 0.1 showed porous morphology while PVC/PSMA/GO-CNT 0.1 revealed unique sort of island-nodule morphology. Tmax of PVC/PSMA/GO-CNT 0.1 was 561°C while PVC/PSMA/CNT 0.1 depicted relatively lower value (552°C). Tg of PVC/PSMA/GO-CNT 0.1 was also increased to 294°C. Peak heat release rate of poly(methyl methacrylate-co-methacrylic acid)/polyamide 6/montmorillonite-modified GO was decreased from 322 to 209 kW/m2 (65%) with 0.03–0.3 g GO-CNT loading.  相似文献   

5.
The structure of NaPb9(PO4)6F(H2O)0.33, isostructural with apatite, was determined by X-ray powder diffraction methods and the result of Rietveld refinement is P63/m, a = 9.76396(8) Å and c = 7.27520(9) Å. The final refinement led to RF = 5.4%, RB = 6.6%. In the tunnel, the water molecule (Ow) and F ions appear to be located in 2b and 4e sites, with occupancies of 0.028(6) and 0.075(8), respectively. In the M(1) and M(2) sites the occupancies of Pb and Na are 0.282(3)/0.051(3) and 0.467(5)/0.033(5), respectively. The formula assigned to the compound is [Pb3.38(4)Na0.62(4)](1)[Pb5.60(6)Na0.40(6)](2)(PO4)6F0.90(10)(H2O)0.33(7)0.77(17), where □ = vacancy. The assignment of the observed frequencies in the Raman and infrared spectra is discussed on the basis of a unit-cell group analysis and by comparison with fluor and chloroapatite analogs. The result of 31P and 23Na magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies confirmed the structural results.  相似文献   

6.
The preparation of thorium phosphate-diphosphate (Th4(PO4)4P2O7, TPD) was developed through the precipitation of thorium phosphate-hydrogenphosphate hydrate (Th2(PO4)2(HPO4)·H2O, TPHPH) at 150–160 °C in closed PTFE container or in autoclaves. From EPMA analyses and SEM observations, the initial precipitate was single phase and multilayered. The behaviour of TPHPH (orthorhombic system with a = 21.368(2) Å, b = 6.695(1) Å and c = 7.023(1) Å) was followed when heating up to 1250 °C. It was first dehydrated leading to the anhydrous thorium phosphate-hydrogenphosphate (TPHP, orthorhombic system with a = 21.229(2) Å, b = 6.661(1) Å and c = 7.031(1) Å at 220 °C) after heating between 180 and 200 °C. This one turned progressively into the new low-temperature variety of TPD (called -TPD, orthorhombic system with a = 21.206(2) Å, b = 6.657(1) Å and c = 7.057(1) Å at 300 °C) correlatively to the condensation of hydrogenphosphate groups into diphosphate entities. These three phases (TPHPH, TPHP and -TPD) exhibit closely related 2D layered structures, therefore different from the 3D structure of the thorium phosphate-diphosphate (high-temperature variety). This latter compound, now called β-TPD, was obtained by heating -TPD above 950 °C. All the techniques involved in this study (XRD, Raman and IR spectroscopy, 1H and 31P NMR) confirmed the successive chemical reactions proposed.  相似文献   

7.
Single crystals of gadolinium–sodium polyphosphate NaGd(PO3)4 were grown for the first time using a flux method and characterized by X-ray diffraction. This phosphate crystallizes in a monoclinic system with P21/n space group and with the following unit-cell dimensions: a = 9.767(3) Å, b = 13.017(1) Å, c = 7.160(2) Å, β = 90.564(5)°, V = 910.3(4) Å3 and Z = 4. The crystal structure was solved from 3451 X-ray independent reflections with final R(F2) = 0.0219 and Rw(F2) = 0.056 refined with 164 parameters (). The atomic arrangement can be described as a long chain polyphosphate organization. Two infinite (PO3)∝ chains with a period of eight tetrahedra run along the [0 1 1] direction. The structure of NaGd(PO3)4 consists of GdO8 polyhedra sharing oxygen atoms with phosphoric group PO4. Each Na+ ion is bonded to eight oxygen atoms.  相似文献   

8.
This paper presents some investigations on the electrical transport properties of ITO/single (double) layer organic semiconductor (m-DNB, benzil, PTCDA, Alq3) contacts in SIS-like (ITO/organic/Si) and MIS-like (ITO/organic/metal) heterostructures. The I-V characteristics have emphasised the injection properties of different contacts and the effect of space charge limited currents in correlation with the type and preparation conditions of the contacts. We have studied the influence of the type of contact (In/ITO; In/Al) on the electrical conduction in Alq3/PTCDA/Si/In heterostructure. In a planar grid contact configuration for In/Al/PTCDA/Al/In structure we have observed the effect of the low electric field on the shape of the I-V characteristic.  相似文献   

9.
The sol-gel technique has been used to prepare ferroelectric barium titanate (BaTiO3) films. The electrical properties of the films have been investigated systematically. The room temperature dielectric constant (ε) and loss tangent (tanδ) at 1 kHz were respectively found to be 370 and 0.012. Both ε and tanδ showed anomaly peaks at 125°C. The room temperature remanant polarization (Pr) and coercive field (Ec) were found to be 3.2 μC/cm2 and 30 kV/cm, respectively. The capacitance–voltage (CV) and conductance–voltage (GV) characteristics also showed hysteresis effect. The temperature variation of CV and G–V characteristics also confirms the ferroelectric to paraelectric phase transition at 125°C.  相似文献   

10.
Low-dielectric constant SiOC(H) films were deposited on p-type Si(100) substrates by plasma-enhanced chemical-vapor deposition (PECVD) using dimethyldimethoxy silane (DMDMS, C4H12O2Si) and oxygen gas as precursors. To improve the physicochemical properties of the SiOC(H) films, the deposited SiOC(H) films were exposed to ultraviolet (UV) irradiation in a vacuum. The bonding structure of the SiOC(H) films was investigated by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The electrical characterization of SiOC(H) films were carried out through I-V measurements using the comb-like patterns of the TiN/Al/Ti/SiOC(H)/TiN/Al/Ti metal-insulator-metal (MIM) structure. Excessive UV treatment adversely affected the SiOC(H) film, which resulted in an increased dielectric constant. Our results provide insight into the UV irradiation of low-k SiOC(H) films.  相似文献   

11.
《Advanced Powder Technology》2019,30(12):3118-3126
A Ni(OH)2 composite with good electrochemical performances was prepared by a facile method. Ni(OH)2 was homogeneously grown on the hydrophilic graphene/graphene oxide (G/GO) nanosheets, which can be prepared in large scale in my lab. Then G/GO/Ni(OH)2 was reduced by L-Ascorbic acid to obtain G/RGO/Ni(OH)2. Caused by the synergy effects among the components, the G/RGO/Ni(OH)2 electrode showed good electrochemical properties. The G/RGO/Ni(OH)2 electrode possessed a specific capacitance as high as 1510 F g−1 at 2 A g−1 and even 890 F g−1 at 40 A g−1. An asymmetric supercapacitor device consisting of G/RGO/Ni(OH)2 and reduced graphene oxide (RGO) was installed and displayed a high energy density of 44.9 W h kg−1 at the power energy density of 400.1 W kg−1. It was verified that the G/GO nanosheets are ideal supporting material in supercapacitor.  相似文献   

12.
The ultrasonic velocity (ν) studies were carried out at a frequency of 2 MHz (transducer of x-cut quartz crystal) using ultrasonic pulse echo system (model UX4400-M) on cresols in ethyl acetate at constant temperature of 311 K. The values of internal pressure ( πi) and molar free volume (Vf) were calculated from measured values of ultrasonic velocity (ν), viscosity (η) and density (ρ). An attempt is made to rationalize the ultrasonic velocity (ν), internal pressure ( πi) and free volume (Vf) of binary mixtures using Kosower solvent parameter (Z), Dimroth solvent parameter (ET) and Dielectric constant (). It is found that there is linear correlation between ultrasonic velocity and acidity constant pk−1a, indicating the dependence of acidity. Correlation of Ksower and Dimroth parameters with ultrasonic velocity confirms that solvent polarity is an important factor in the variation of ultrasonic velocity in the present investigation.  相似文献   

13.
The carbonylate anions [M(CO)5]- (M = Mn, Re), [Co(CO)4]-, [CpFe(CO)2]-, and [CpM(CO)3]- (M = Mo, W) react with C70 via single electron transfer processes to give, respectively, the corresponding 17-electron, metal-centered radicals Co(CO)4, M(CO)5 (M = Mn, Re), CpFe(CO)2, and CpM(CO)3 (M = Mo, W) in addition to the radical anion C70-. In secondary thermal or photochemical processes, the metal-centered radicals Co(CO)4 and M(CO)5 (M = Mn, Re) combine with the C70- to form the new η2-C70 complexes [Co(CO)32-C70)]- and [M(CO)42-C70)]-. However, the metal-centered radicals CpM(CO)3 (M = Mo, W) require photolysis to react with C70- to form [CpM(CO)22-C70)]-, whereas neither thermolysis nor photolysis induces reaction between CpFe(CO)2 and C70-. The photochemical reaction of [Mn(CO)5]- with a mixture of higher fullerenes known to contain at least C76, C78, C84, C86, and C90 resulted similarly in the formation of the higher fullerene complexes [Mn(CO)42-Cn)]- (n = 76, 78, 80, 82, 84, 86, 88, 90, 92, 96, and 98), all identified using electrospray mass spectrometry.  相似文献   

14.
A new organic phosphate of (8-HQDH)(H2PO4)·H2O has been obtained by hydrothermal reaction. The crystal structure was determined with data: triclinic, space group P , a=6.541(1) Å, b=8.5909(8) Å, c=10.769(1) Å, =98.734(7)°, β=91.20(1)°, γ=97.91(1)°, V=591.9(1) Å3, and Z=2. The (H2PO4) groups and H2O molecules stack into sheets and 8-HQ cations fixed parallelly with each other to form an intercalating compound by H-bonds.  相似文献   

15.
Bis-(5-nitro-2H-tetrazolato-N2)tetraammine[cobalt(III)/nickel(III)] perchlorates (BNCP/BNNP) and mono-(5-nitro-H-tetrazolato-N)triammine [copper(II)/zinc(II)] perchlorates (MNCuP/MNZnP) have been synthesized during this work. The synthesis was carried out by addition of carbonato tetraammine metal [Co/Ni/Cu/Zn] nitrate [CTCN/CTNN/CTCuN/CTZnN] to the aqueous solution of sodium salt of 5-nitrotetrazole followed by reaction with perchloric acid. The precursors were synthesized by the reaction of aqueous solution of their respective nitrates with ammonium carbonate at 70 °C. The complexes and their precursors were characterized by determining metal and perchlorate content as well as infrared (IR), electron spectra for chemical analysis (ESCA) and X-ray diffraction (XRD) techniques. The TG profiles indicated that BNCP, BNNP and MNCuP are thermally stable up to the temperature of 260–278 °C unlike MNZnP (150 °C). Sudden exothermic decomposition was observed in case of bis-(5-nitro-2H-tetrazolato-N2)tetraammine cobalt(III) perchlorate, bis-(5-nitro-2H-tetrazolato-N2)tetraammine nickel(III) perchlorate and mono-(5-nitro-H-tetrazolato-N)triammine zinc(II) perchlorate resulting in the severe damage of the sample cup. Sensitivity data indicated that the Co/Ni/Cu complexes are more friction sensitive (3–4.8 kg) than mono-(5-nitro-H-tetrazolato-N)triammine zinc(II) perchlorate (14 kg). The impact sensitivity results of the complexes corresponded to h50% of 30–36 cm.  相似文献   

16.
Mercury is one of the most toxic heavy metals found in solid and liquid waste disposed by chloro-alkali, paint, paper/pulp, battery, pharmaceutical, oil refinery and mining companies. Any form of mercury introduced to nature through any means is converted into a more toxic form such as methylmercury chloride (as produced by aquatic organisms) which usually accumulates in the tissue of fish and birds.

The primary aim of this study was to investigate performance of dithiocarbamate-anchored polymer/organosmectite composites as sorbents for removal of mercury from aqueous solution. The modified smectite nanocomposites then were reacted with carbondisulfide to incorporate dithiocarbamate functional groups into the nanolayer of the organoclay. These dithiocarbamate-anchored composites were used for the removal of mercury species [Hg(II), CH3Hg(I) and C6H5Hg(I)]. Mercury adsorption was found to be dependent on the solution pH, mercury concentration and the type of mercury species to be adsorbed. The maximum adsorption capacities were equal to 157.3 mg g−1 (782.5 μmol g−1) for Hg(II); 214.6 mg g−1 (993.9 μmol g−1) for CH3Hg(I); 90.3 mg g−1 (325 μmol g−1) for C6H5Hg(I). The competitive adsorption capacities (i.e. adsorption capacities based on solutions containing all three mercuric ions) are 7.7 mg g−l (38.3 μmol g−1), 9.2 mg g−l (42.6 μmol g−1) and 12.7 mg g−1 (45.7 μmol g−1) for Hg(II), CH3Hg(I) and C6H5Hg(I), respectively, at 10 ppm initial concentration. The adsorption capacities on molar basis were in order of C6H5Hg(I) > CH3Hg(I) > Hg(II).  相似文献   


17.
Piezoelectric powders and ceramics with the composition of Pb0.95Sr0.05(Zr0.52Ti0.48)O3–Pb(Zn1/3Nb2/3)O3–Pb(Mn1/3Sb2/3)O3 (PZT–PZN–PMS) were prepared by molten salt synthesis (MSS) and conventional mixed-oxide (CMO) methods, respectively. The influence of synthesis process on the properties of powders and ceramics were investigated in detail. The results show that the MSS method significantly improved the sinterability of PZT–PZN–PMS ceramics, resulting in an improvement of dielectric and piezoelectric properties compared to the CMO method. The optimum values of MSS samples are as follows: r = 1773; tan δ = 0.0040; Tc = 280 °C; d33 = 455 pC/N; kp = 0.70; Qm = 888; Ec = 10.3 kV/cm; and Pr = 28.2 μC/cm2, at calcination of 800 °C and sintering of 1120 °C temperature.  相似文献   

18.
The search for dielectric materials with a high dielectric constant and ′r = ƒ(T) curves with a flat profile fitting the X7R specification is still ongoing. Promising results were obtained by mixing compounds with closely related structures, such as the tetragonal tungsten bronze (TTB) niobate K2Sr4Nb10O30 and the perovskite Pb(Mg1/3Nb2/3)O3 (PMN). The present study, based on three methods of synthesis, explores the origin of the spreading out of the dielectric curves ′r = ƒ(T). For the composition 10x K0.2Sr0.4NbO3 (KSN) + (1 − x)Pb(Mg1/3Nb2/3)O3 (PMN) with x = 0.3–0.6, the three synthesis methods provided similar characteristics and for the highest perovskite ratio (x = 0.3), the ′r = ƒ(T) curve exhibits a flat profile. When lithium is used as a sintering agent, ′r = ƒ(T) curves present a linear dependency with the temperature. These materials are also characterized by a structural and a microstructural inhomogeneity. Two phases TTB and perovskite type, different from KSN and PMN, are present after calcination and sintering, but not evenly distributed. The PbO loss during sintering also contributes to the evolution of the properties of the material.  相似文献   

19.
Si–C films with the Si compositions ranging from 40 to 70% have been grown by Cat-CVD using dimethylsilane [DMSi, Si(CH3)2H2] compounds. Tetraethoxysilane [TEOS, Si(OC2H5)4] and dimethyldimethoxysilane [DMDMOS, Si(CH3)2(OCH3)2] gas source gave us Si–C–O (C-doped SiOx) films with wide ternary alloy compositions. The dielectric constant of a Si–C film has been evaluated by CV measurements (at 1 MHz) using Al/Si–C/n-Si(001)/Cu MIS structure. The relative dielectric constant value of a Si–C film was estimated to be 3.0. The resistivity of the Si–C layer with 1 mm diameter and 0.24 μm thickness was estimated to be more than 24.5 Gohm·cm. These results gave us promising characteristics of Si–C and Si–C–O films grown by alkylsilane- and alcoxysilane-based Cat-CVD.  相似文献   

20.
Composite materials between conjugated polymer; poly[2-methoxy-5-(2'-ethylhexyloxy)-1.4-phenylene vinylene] (MEHPPV), or ruthenium(II)-tris(2,2'-bipyridine) (Ru(bpy)32+)-poly(sodium 4-styrenesulfonate) (PSS) complex and single-walled carbon nanotubes (SWNTs) were fabricated using polymer wrapping method. Formation of SWNT/MEHPPV or SWNT/PSS/Ru(bpy)32+ composite was confirmed by absorption and fluorescence spectra, and AFM images. Electrode modified with SWNT/MEHPPV or SWNT/PSS/Ru(bpy)32+ composite was prepared by casting from DMF solution of SWNT/MEHPPV or aqueous solution of SWNT/PSS/Ru(bpy)32+. The electrode modified with SWNT/MEHPPV or SWNT/PSS/Ru(bpy)32+ composite showed photocurrent response due to photoexcitation of MEHPPV or Ru(bpy)32+. The photocurrents are ascribed to photoinduced electron-transfer reaction from excited state of MEHPPV or Ru(bpy)32+ to SWNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号