首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用传统工艺方法制备以YAG:Eu3和Eu2 O3两种方式掺杂Eu3+的系列SiO2-NaF-YAG系氟氧化物玻璃.研究Eu3+离子浓度对玻璃发光强度的影响;采用XRD、红外光谱和荧光光谱研究Eu3+离子掺杂的玻璃的结构和发光性能.XRD谱表明样品为非晶态玻璃;红外光谱的研究结果表明:玻璃是以硅氧四面体网络结构为主;发射光谱研究结果表明:发射峰来自于Eu3+的5D0→7F0、5 D0→7F1和5D0→F2跃迁,614 nm处的特征发射峰最强.YAG∶Eu3+形式掺杂的玻璃的发光性能较好,且Eu3+周围的晶格场环境具有较高的对称性.在掺杂浓度0.15% ~1.0%范围内没有发生浓度淬灭现象.  相似文献   

2.
用高温熔融法制备了Eu2O3单掺和Ce/Tb/Eu三元共掺杂的CaO-B2O3-SiO2(CBS)发光玻璃材料,并使用荧光分光光度计和CIE色度坐标对其结构以及发光特性进行了研究.光谱分析结果表明:在394nm激发下,Eu2O3单掺杂的CBS发光玻璃的发射光谱中出现了Eu3+的特征发射峰.这些发射峰主要起源于Eu3+中的4f电子的f-f跃迁;在374nm激发下,三元共掺杂发光玻璃的发射光谱中同时观测到了起源于Ce3+、Tb3+和Eu3+的蓝色、绿色和红色的三基色发射,这些发射可进一步混合成为白光发射.此外,Ce/Tb/Eu三元共掺杂发光玻璃的发光颜色,随着Eu2O3含量的增加从蓝光逐渐过渡到白光,这显示出了发光颜色的可调节性,极大地扩展了其在白光发光领域中的应用.  相似文献   

3.
利用柠檬酸溶胶凝胶法合成了绿色发光材料γ-LiAlO2:Tb3+。用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)及荧光光谱(PL)等测试手段,研究了助熔剂H3BO3对γ-LiAlO2:Tb3+的物相、形貌和发光性能的影响。结果表明,样品仍为四方晶系,在238nm的紫外激发下,跃迁发射峰位于489nm,542nm,548nm,584nm和620nm,分别对应于Tb3+的5 D4→7F6,5 D4→7F5,5 D4→7F4和5 D4→7F3的能级跃迁。硼酸的加入,有利于样品荧光和形貌的改善,其最佳掺杂摩尔浓度为1.5%。  相似文献   

4.
采用沉淀法合成了YVO4:Eu3+,Bi3+荧光粉,利用XRD,SEM和TEM对样品的结构和形貌进行表征,并用荧光光谱仪测试了样品的激发和发射光谱。X射线衍射图分析表明,所制得的荧光粉与YVO4的物相一致,样品属于体心四方相。其扫描电镜和透射电镜照片显示颗粒为纺锤形,大小比较均匀,长径为250nm左右,短径为100nm左右。在275nm近紫外光激发下,该荧光粉的发光峰分别归属于Eu3+的5 D0→7 F1(596nm),5 D0→7F2(617nm,621nm),5 D0→7F3(654nm),5 D0→7F4(702nm)辐射跃迁。最强发射位于617nm左右,属于红光。研究了Eu3+浓度对样品发光强度的影响。随着Eu3+浓度的增加,发射峰强度增大,当Eu3+摩尔分数为12%时,峰值强度最大。Bi3+对Eu3+的发光有一定的敏化作用,当Bi3+摩尔分数达到5%时,敏化作用最强。  相似文献   

5.
采用熔融-猝冷法制备了Dy3+掺杂的Ge-Ga-S玻璃样品,用差热分析法分析了玻璃的热学稳定性,研究了该玻璃样品的吸收光谱性质.应用Judd-Ofelt理论计算了Dy3+的振子强度、自发辐射跃迁几率、辐射寿命、荧光分支比等光谱参数,并拟合了相应的强度参数Ωt(t = 2,4,6).探讨了862 nm波长激发下玻璃上转换发光的机理,以及掺杂离子浓度与上转换发光强度的关系.结果表明862nm激光泵浦掺杂0.5 wt% Dy3+的玻璃样品,可以观察到很强的576 nm的黄光,对应于Dy3+4F9/2→6H13/2的跃迁.  相似文献   

6.
用高温熔融法制备了稀土Ce、Tb和Sm单掺杂和三元共掺杂的CaO-B2O3-SiO2(CBS)发光玻璃材料,并使用荧光分光光度计和CIE色度坐标对其光谱学和发光特性进行了研究.光致发光图谱表明,单掺杂Ce、Tb和Sm的发光玻璃在光激发下分别出现了稀土离子Ce3+、Tb3+和Sm3+的特征发射峰;同时,在374nm激发下,Ce/Tb/Sm三元共掺杂CBS发光玻璃的发射光谱中同时观测到了蓝光、绿光和红橙光的发射带,这些发射带的混合实现了白光的全色发射显示.此外,三元共掺杂发光玻璃显示出了发光颜色随稀土元素共掺杂比的可调节性,极大地扩展了其在白光发光二极管中的应用.  相似文献   

7.
以β-丙氨酸和尿素为燃料,采用溶液燃烧法在低温450℃下合成制备了Ca3Al2O6:Eu3+荧光粉。样品的发射光谱由位于594 nm、617 nm、653 nm及700 nm处的4组线状峰构成,分别对应Eu3+的5D0→7Fj(j=1~4)特征跃迁,其中617 nm处的峰最强,样品呈现红色发光。考察了Eu3+掺杂浓度对晶体结构和发光性能的影响。结果呈示:随着掺杂浓度的增加晶格常数逐渐减小,[O—Al—O]的对称伸缩振动Raman峰蓝移;在低掺杂浓度时荧光强度逐渐增大,掺杂6%时达到最大,之后出现浓度猝灭现象,猝灭机制为交互作用;Eu3+的5D0→7F2与5D0→7F1跃迁强度比随着掺杂浓度的增加逐渐增大,掺杂的Eu3+主要取代处于非对称中心的Ca2+。  相似文献   

8.
采用高温固相法合成Mg2-xSnO4∶Eu3+x系列橙红色发光粉.用X射线衍射分析测定Mg2-xSnO4∶Eu3+x荧光粉的晶体结构,用F-4600荧光分光光度计测定其激发光谱和发射光谱.结果表明:Mg2-xSnO4∶Eu3+x荧光粉属于正交晶系,在250~370 nm是一个很宽的激发峰,它属于O-Eu的电荷迁移带和Eu3+的f-f高能级跃迁吸收.发射光谱由588 nm、595 nm、598 nm、617 nm4个主要发射峰组成,它们分别属于Eu3+的5D0-7F1(588 nm,595 nm,598 nm)和5D0-7F2(617 nm)跃迁,以5D0-7F1跃迁为主.具体研究激活剂Eu3+的掺杂量对Mg2-xSnO4∶Eu3+x发光粉发光性能的影响.结果表明Eu3+的最佳掺杂浓度为7%.  相似文献   

9.
采用高温固相法制备Ce、Eu、Tb、Sm单双激活CaO-B2O3-CaCl2(CBC)的系列荧光材料,研究它们的光谱和Stokes位移.Eu、Tb单掺杂的发光体分别在468 nm和550 nm处有蓝光和绿光发射,但是Eu、Tb的猝灭浓度较大.双掺杂Ce/Tb、Sm/Eu的发射光谱分别归属Eu2 的4f65d1→8S7/2和Tb3 的5D4→7F5特征跃迁发射.在CBC中,Ce、Sm分别是Tb、Eu的高效敏化剂,双掺Ce/Tb和Sm/Eu的荧光体发光强度比单掺Tb、Eu提高4~12倍,产品成本降低了25%~35%.  相似文献   

10.
采用溶胶-凝胶法制备了高浓度Eu3+掺杂无定型钛酸盐(KBT)发光薄膜.紫外灯下观察,Eu3+掺杂的KBT薄膜发出明亮的红光.通过X射线衍射(XRD)和扫描电镜(SEM)对薄膜的结构和表面形貌进行了分析,利用荧光光谱仪对薄膜的发光性质展开了测试和研究.荧光光谱记录到的Eu3+的发射包括4个强峰,其中Eu3+的5D0→7F2(616 nm)超灵敏跃迁最强.激发光谱和三维荧光光谱分析表明,由于Eu-O的电荷迁移带的吸收作用,Eu3+掺杂的KBT薄膜在短波紫外区被有效激发,是一种高效紫外-可见光转换材料, 为从光-光转换角度提高硅太阳能电池的光能吸收率提供了新思路.  相似文献   

11.
用高温熔融法制备了Tm3+/Er3+/Yb3+共掺碲酸盐玻璃(TeO2-ZnO-La2O3)样品,测试了玻璃样品的吸收光谱和上转换发光光谱,分析了上转换发光机理。结果发现:在975 nm,波长激光二极管(LD)激励下,制备的碲酸盐玻璃样品可以观察到强烈的红光(662 nm)、绿光(525、546 nm)和蓝光(475 nm)三基色上转换发光,分别对应于Er3+的4F9/2→4I15/2,2H11/2→4I15/2、4S3/2→4I15/2和Tm3+的1G4→3H6能级跃迁;随着Yb3+掺杂含量和泵浦功率的增加,样品的上转换发光强度都得到了一定程度的提高;通过调整稀土掺杂的浓度,得到了接近于标准白光(EE)发射。  相似文献   

12.
O482.31 A摘要:利用高温固相法制备一系列Na33YSi3O9:Ce+,Tb3+荧光粉,通过X-射线衍射仪和光致发光光谱分别对其物相和发光性能进行表征.结果表明:在Na3YSi3O9共掺Ce3+和Tb3+并未改变其晶格结构;激发光谱主要由Tb3+的f-f跃迁以及Ce3+和Tb3+的4f-5d跃迁组成;在320 nm激发下,发射光谱出现Tb3+的f-f和弱Ce3+的5d-4f跃迁发射,其主峰来自于Tb3+的5D4→7F5跃迁;色坐标为(0.2402,0.4429);由于Ce3+对Tb3+的敏化作用和浓度猝灭,Tb3+的发射强度随着Tb3+或Ce3+掺杂量的增加先提高后减弱.Ce3+和Tb3+的最佳掺杂量分别为0.04和0.25.  相似文献   

13.
掺Eu3+,Tb3+钨酸钙的共沉淀法制备及表征   总被引:3,自引:0,他引:3  
采用共沉淀法成功制得了稀土Eu3+、Tb3+掺杂的CaWO4三原色荧光粉体.利用XRD表征产物的晶体结构,研究表明:由于Eu3+、Tb3+离子半径与Ca2+大小相当,稀土掺杂CaWO4的晶体结构并未引起其晶体结构的较大变化.荧光光谱仪测定样品的发光特性,结果表明:纯CaWO4产生430 nm波长蓝光,CaWO4:Tb3+产生543 nm波长绿光,而CaWO4:Eu3+则产生616 nm波长红光.  相似文献   

14.
采用柠檬酸溶胶-凝胶法合成了γ-LiAlO2:Tb3+绿色荧光粉,研究了材料的激发和发射光谱。γ-LiAlO2:Tb3+材料呈多峰发射,发射峰位于489、542、584和620 nm,分别对应于Tb3+的5D4→7FJ,J=6,5,4,3跃迁发射,主峰位于542 nm。监测542 nm发射峰,荧光体的最大激发峰位于238 nm,属于宽带激发。研究了Tb3+掺杂浓度及电荷补偿剂Li+对γ-LiAlO2:Tb3+材料发射强度的影响。结果表明:调节激活剂浓度、添加电荷补偿剂(Li+)均可以在很大程度上提高材料的发射强度。  相似文献   

15.
张锦  冯灏 《西安工业大学学报》2010,30(4):315-318,324
为了寻找Ti O2∶Eu3+纳米晶的最佳制备工艺条件,采用溶胶-凝胶法制备了Ti O2∶Eu3+纳米晶,研究了Eu3+掺杂浓度、退火温度、Al3+的掺入等工艺参数对Ti O2∶Eu3+纳米晶发射光谱的影响.利用PL、PLE对样品进行了表征.结果表明用468 nm激发光源激发Ti O2∶Eu3+纳米晶时,样品显示出强红光发射,对应于Eu3+粒子的5D0→7F2超灵敏跃迁;且荧光强度随着Eu3+掺杂浓度和退火温度的升高先增强后减弱;700℃退火的样品红光发射强度达到最强,Eu3+的最佳掺杂浓度为0.8%mol;Al3+的掺入可以提高Eu3+的红光发射强度,采用钛酸正四丁脂∶异丙醇∶冰乙酸∶水=1∶4∶4∶2制备出的Ti O2:Eu3+纳米晶的红光发射光谱最强.  相似文献   

16.
采用共沉淀法合成了一系列掺杂Eu3+,Dy3+的Zn3(BO3)2纳米发光材料,X射线衍射测定其物相为单斜晶系的Zn3(BO3)2,平均粒径为15~25?nm左右,同时研究了Eu3+,Dy3+掺杂样品的发光特性.在Eu3+和Dy3+共同掺杂的体系中,可以观察到由于Eu3+,Dy3+之间的能量传递使Eu3+强烈敏化Dy3+的发光现象.  相似文献   

17.
基于积分球配以CCD光谱测试系统,在紫色发光二极管激发下,对Dy3+掺杂锗碲酸盐(NZPGT)玻璃的荧光光谱进行表征,实现了以荧光发射特性绝对评价为目标的绝对光谱功率分布测定,进一步求得了辐射通量、光通量以及荧光量子产率等荧光特征参数。紫光LED激发下,总辐射通量和总光通量分别为1 172!W和0.034lm,其中Dy3+的4个可见特征发射峰的辐射通量为86!W,占总辐射通量的7.34%,其可见特征发射的总荧光量子产率为12.38%。结果表明,Dy3+掺杂NZPGT玻璃可被紫光有效激发,并且Dy3+的单一掺杂可实现高效率的黄白光发射。超过10%的荧光量子产率表明Dy3+掺杂NZPGT玻璃具有良好的实际应用前景,相关的绝对光谱参数也为进一步研发稀土掺杂固体发光材料提供有益的参考依据。  相似文献   

18.
YF_3:Eu~(3+)荧光体的合成和光谱性质   总被引:1,自引:1,他引:0  
采用溶剂热法合成了Eu3+单掺YF3分析了样品的结构与形貌,结果表明,所合成的样品为单相,颗粒粒度分布均匀.测定了YF3:Eu3+的激发和发射光谱,结果显示,Eu3+离子的发光以电偶极跃迁5D0→7F2(612nm)为主而发红光,稀土离子处于非中心对称的格位上.  相似文献   

19.
为了进一步探讨稀土Er3+掺杂材料在蓝/绿可见波段和紫外波段的上转换发光机制,制备了掺杂Er3+的ZrF2-SiO2材料,测量了样品的吸收谱和在980 nmLD激发下的上转换荧光发射谱,研究了上转换发光强度与激光泵浦功率的对数关系.分析了稀土Er3+中4f电子跃迁的特征.证实了在980 nmLD的激发下,ZrF2-SiO2:Er3+在404 nm、445 nm和525 nm、548 nm附近的蓝/绿可见波段上转换发光过程是激发态吸收(ESA),得到了2H9/2→4I15/2、4F5/2→4I15/2蓝光三光子过程和4S3/2→4I15/2、2H11/2→4I15/2绿光双光子过程上转换发光机制.  相似文献   

20.
采用高温固相法分别制备Eu2+和Eu3+掺杂的Sr2MgSi2O7荧光粉.在356nm近紫外光激发下,Sr2MgSi2O7:Eu3+荧光粉呈多峰红光发射,主峰位于590nm、615nm、650nm和700nm,分别对应于Eu3+离子5D1→7FJ(J=1,2,3,4)能级的跃迁.在371nm近紫外光激发下,Sr2MgSi2O7:Eu2+荧光粉发射峰介于425~550nm之间,呈蓝光发射,主峰位于476nm,对应Eu2+的4f65d1→4f7跃迁.随着Eu2+浓度的增大,发射峰强度先增大后减弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号