共查询到20条相似文献,搜索用时 31 毫秒
1.
An exact analysis of a radiative hydromagnetic flow behavior over a tilted parabolic plate through a permeable medium along with variable species concentration and fluid temperature in the presence of a slanted magnetic field parameter, chemical reaction, and heat generation has been carried out in this study. Closed-form analytical benchmark solutions for flow-governing equations are obtained by using the Laplace transform method. Thereafter, the incidences of different important physical entities on the nondimensional velocity field, temperature distribution, and species concentration are presented using graphs, whereas impacts of various physical entities on wall shear stress, heat and mass transfer rates are presented in tables. It is worth noting that an increase in the magnetic field and its inclination angle causes the reduction in the fluid velocity. However, wall shear stress increases with the increase of magnetic field and its inclination angle. The novel results in this article can be used to improve quicker cooling and producing miniaturized heat flow systems with upgraded efficiency and cost-effectiveness. 相似文献
2.
The study of a heat-absorbing, chemically bonding fluid over a porous channel in a conducting field with ramped wall temperature is considered. The Dufour effect presence is also considered with thermal radiation. The novelty is the consideration of radiation absorption and the angle of inclination. In this approach, the dimensional governing equations and boundary forms are transformed into a dimensionless form using standard nondimensional parameters and variables. The simplified governing equations and boundary forms are then calculated using the Laplace transform method. We get accurate answers in the speed, temperature, and concentration spaces. Calculations of surface friction, the Nusselt number, and the Sherwood number are also performed. Several physical parameters' influences on the quantified flows are analysed using graphics. A comparison is also made with the results available in the literature and found a good agreement in the absence of radiation absorption. When a chemical is added to a fluid to dilute it, the velocity area and concentration area both decrease, but the temperature area increases as a result of an increase in the Schmidt Number, the Nusselt Number, and the skin friction. Our research revealed that the Dufour effect and arbitrarily ramped temperatures had a similar effect on fluid velocity. 相似文献
3.
The influence of simultaneously applied ramped boundary conditions on unsteady magnetohydrodynamic natural convective motion of a second‐grade fluid is investigated and analyzed in this study. The motion of the fluid is considered near an infinite upright plate that is nested in a porous medium subject to nonlinear thermal radiation effects. The Laplace transformation technique is utilized to acquire the exact solutions of momentum and energy equations. To effectively examine the rate of heat transfer and shear stress, the Nusselt number and skin friction coefficient are also established. The outcomes of mathematical computations are elucidated through tables and figures to highlight some physical aspects of the problem. Some limiting models of the present problem are also deduced and presented. On comparison, it is observed that the fluid exhibits lower temperature and velocity profiles under ramped boundary conditions. It is also found that wall shear stress can be controlled by choosing large values of the magnetic parameter (M) and Prandtl number (Pr). In addition, the heat transfer rate specifies inverse trends for growing values of radiation parameter (Nr) and Prandtl number (Pr), while it increases rapidly under a ramped surface condition and decreases slowly under a constant surface condition. 相似文献
4.
A numerical study has been carried out to investigate the temperature distribution and the natural convection heat transfer in axisymmetric two-dimensional vertical saturated porous cylinder with steady state laminar flow. A comparison between two situations is done under the effect of MHD (magnetohydrodynamics) and radiation. In the two situations, the vertical walls of the cylinder are cooled with constant wall temperature and a constant heat generation subjected along the centerline of the cylinder. The first case for cylinder with insulated upper surface and cooled bottom surface while the second case for cylinder with cooled upper surface and insulated bottom surface. The governing equations used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected the system are Rayleigh number ranging within (102≤ Ra ≤104), radiation parameter (0≤ Rd ≤ 2) and magnetohydrodynamics MHD (Mn) (0 ≤ Mn≤ 2).The results show that the temperature of Case 1 is more than that in Case 2 at constant Ra, Mn and Rd while the value of the stream in Case 2 is greater than that in Case 1. Nu increase with the increase of Rd and increasing Mn caused the temperature to increase and the streamline dropped while Nu decreased. A correlation has been set up to give the average Nusselt number variation with Ra, Rd and Mn for which the results are found to be in good agreement with previously published researches. 相似文献
5.
Hussain Basha G. Janardhana Reddy Abhishek Annapoorna Killead Vinaya Pujari N. Naresh Kumar 《亚洲传热研究》2019,48(5):1595-1621
The present numerical study reports the chemically reacting boundary layer flow of a magnetohydrodynamic second‐grade fluid past a stretching sheet under the influence of internal heat generation or absorption with work done due to deformation in the presence of a porous medium. To distinguish the non‐Newtonian behaviour of the second‐grade fluid with those of Newtonian fluids, a very popularly known second‐grade fluid flow model is used. The fourth order momentum equation with four appropriate boundary conditions along with temperature and concentration equations governing the second‐grade fluid flow are coupled and highly nonlinear in nature. Well‐established similarity transformations are efficiently used to reduce the dimensional flow equations into a set of nondimensional ordinary differential equations with the necessary conditions. The standard bvp4c MATLAB solver is effectively used to solve the fluid flow equations to get the numerical solutions in terms of velocity, temperature, and concentration fields. Numerical results are obtained for a different set of physical parameters and their behaviour is described through graphs and tables. The viscoelastic parameter enhances the velocity field whereas the magnetic and porous parameters suppress the velocity field in the flow region. The temperature field is magnified for increasing values of the heat source/sink parameter. However, from the present numerical study, it is noticed that the flow of heat occurs from sheet to the surrounding ambient fluid. Before concluding the considered problem, our results are validated with previous results and are found to be in good agreement. 相似文献
6.
An analysis of unsteady MHD natural convective flow, transfer of mass, and radiation past linearly accelerated slanted plate inserted in an immersed permeable medium with uniform permeability, variable temperature, and concentration within the sight of a slanted magnetic field has been done. The novelty of the current examination is to analyze the effect of a slanted magnetic field on the flow phenomena with heat source/sink and destructive reaction for linearly accelerated slanted plate. The governing equations have been solved by using Laplace transform strategy. The estimations of flow velocity, concentration, and temperature are exhibited graphically, while local skin friction, mass, and heat transfer rates are put on view in tabular form for different values of relevant stream parameters. It is fascinating to observe that the raise of inclination angle of an applied magnetic field diminishes both velocity profiles and local skin friction. 相似文献
7.
The present study analyzes the effect of chemical reaction on an unsteady magnetohydrodynamic boundary layer viscous fluid over a stretching surface embedded in a porous medium with a uniform transverse magnetic field. A Darcy‐Forchheimer drag force model is employed to simulate the effect of second‐order porous resistance. Dissipative heat energy based on both viscous and Joule dissipation along with a heat source/sink is considered to enhance the energy equation. Similarity analysis is imposed to transform the governing differential equations into a set of nonlinear coupled ordinary differential equations. These sets of equations are solved numerically using the Runge‐Kutta fourth‐order scheme followed by the shooting algorithm. The effects of physical parameters such as magnetic field, Prandtl number, Eckert number, Schmidt number, unsteadiness parameter, and chemical reaction parameters have been discussed on velocity, temperature, and concentration fields. Computation for the coefficient of skin friction, rate of heat and mass transfer is done and presented in a table for validation of the present outcomes. 相似文献
8.
9.
This study deals with an analysis of the time-dependent dynamics of micropolar fluid flow subject to Lorentz force, diffusion thermal, and viscous dissipation effect past a uniformly moving semi-infinite porous plate in the presence of chemical reaction. Expressions of velocity, microrotation, concentration, temperature, skin friction, Sherwood number, and Nusselt number are established and the effect of several parameters on them are represented graphically. Equations governing the flow and heat transfer are solved by adopting the regular perturbation technique. It is noticed that temperature distribution as well as the coefficient of friction is enhanced due to the diffusion thermo effect. It is observed that the microrotation increases with increasing magnetic parameters. Furthermore, the study confirms a drop in fluid concentration under the composition of species. 相似文献
10.
In this work, impacts of dispersing nonspherical shaped cobalt nanoparticles in the blood are analyzed for magnetohydrodynamic radiative transport of blood inside a vertical porous channel. An Oldroyd-B model is used to feature flow characteristics of blood along with Fourier's principle of heat transmission for the mathematical modeling of the problem. A fractional system is constructed by employing the idea of the Caputo–Fabrizio derivative on subsequent differential equations. The Laplace transform method is adopted to solve the fractional flow and energy equations subject to generalized boundary conditions, which involve time-dependent functions and , respectively. Instead of promoting the analytic velocity and energy expressions, Zakian's numerical algorithm is operated to achieve the reverse transformation purpose of Laplace domain functions. To certify the obtained solutions, two additional numerical algorithms named Stehfest's algorithm and Durbin's algorithm are inculcated in this study, and comparative illustrations are drawn. For the extensive investigation of shear stress and heat transfer phenomenon, numerical simulations for the coefficient of skin friction and Nusselt number are performed, and outcomes are communicated through various tables. The impacts of shape-dependent viscosity and other significant parameters on flow patterns are investigated through graphs for multiple motion types of the left channel wall. Meanwhile, the thermal performance of nanofluid is examined for platelet, brick, cylinder, and blade shape nanoparticles, along with other thermal parameters. In addition, some recently reported results and flow profiles for Maxwell, second-grade, and viscous fluids are deduced graphically as special cases of the current study. 相似文献
11.
The given investigation concerns the study of non-Newtonian Oldroyd-B fluid flow across a permeable surface along with nonlinear thermal radiation, chemical reactions, and heat sources. Equations modified are thus numerically evaluated by employing bvp4c-technique. Obtained outcomes are exhibited graphically. Pictorial notations are used to investigate the consequences of necessary parameters of velocity, energy, and mass. Acquired outcomes provide promising agreement with already established consequences provided in the open literature. The obtained results guided that magnetic field parameter (), porosity parameter (), Deborah number reduce momentum boundary layer thickness, furthermore, growth in the relevant Deborah number improves the corresponding momentum boundary layer. 相似文献
12.
The aim of the current study is to explore the effects of heat and mass transfer on unsteady chemically reacted Casson liquid flow over an exponentially accelerated vertical plate in a porous medium. It is assumed that the bounding plate has varying temperatures as well as concentrations in a porous medium under a uniform magnetic field. This phenomenon is modeled in the form of a system of partial differential equations (PDEs) with boundary conditions. The governing dimensionless PDEs are solved using Laplace transform method for velocity, temperature, and concentration. The impact of nondimensional parameters, which are controlling the flow like Casson parameter, Soret number, magnetic parameter, heat generation parameter, Prandtl number, radiation parameter, and Schmidt number is analyzed through graphs. The incremental values of the Casson fluid parameter lead to a reduction in velocity and discovered that for large values of the Casson parameter, the fluid is near to the Newtonian fluid. Also, the Sherwood number increases with enhancing dissimilar estimators of the Schmidt and Soret numbers. A comparison has been made with the published work (Kataria et al.) for a particular case, which was in good agreement. 相似文献
13.
This article discusses the impact of chemical reaction and radiation on an unstable two-dimensional laminar flow around a viscous fluid over a semi-infinite, vertical absorbent surface that moves progressively. The governing classification of partial differentiation was converted into an ordinary differentiation system in this case. To get numerical solutions, the Galerkin finite element technique is applied to nondimensional velocity, micro-rotation, temperature, and concentration profiles. The consequences of skin friction, the combined pressure quantity, the mass, and heat assignments at the boundary are formed using different fluid properties and flow conditions. Physical quantities and their effects Graphs depict the radiation parameter R, thermal conductivity k, Eckert number Ec, and other velocities, micro-rotation, temperature, and concentration factors. The main findings of this current problem is showing the chemical reaction effects on velocity and concentration. It is observed that both the velocity and concentration of the fluid decrease when Kr increases. 相似文献
14.
The impacts of viscous dissipation, Brownian motion, and the thermophoresis caused by temperature gradient on the steady two-dimensional incompressible chemically reactive and radiative flow of traditional fluid through an exponentially stretched sheet embedded in a Darcy porous media are explored by approaching boundary layer analysis. A magnetic field effect is also addressed along the transverse direction of the horizontal stretched sheet. With the implementation of some suitable nondimensional quantities, the regulating nonlinear partial differential equations, which represent the flow geometry, are transformed into coupled nonlinear ordinary differential equations. To acquire the numerical findings from this set of equations, a three-stage Lobatto IIIa, in-built MATLAB scheme named, Bvp4c is used. The effects of the dimensionless physical factors on the flow, heat, and concentration profile, as well as on the coefficient of drag force and the rate of thermal and mass transit at the surface, are graphically and numerically depicted. The thermal profile, as well as the magnitude of the coefficient of the drag force and the Sherwood number, is found to be escalated with the Darcy–Forchheimer factor, but the depreciation in the value of temperature gradient at the wall is noticed for the same. 相似文献
15.
In this study, an investigation is performed to analyze the impact of the heat source/sink parameter on the laminar transient free convective flow through a vertical cylinder filled with a permeable medium. The governing nondimensional PDEs of the mathematical model along with their appropriate initial and boundary conditions are solved analytically by incorporating the Laplace transform scheme. Moreover, we explored the impact of emerging physical parameters of the considering model in the presence of the source/sink on the velocity profiles by graphs and tables. It is found that the velocity profile has a increasing tendency with enhancement in the numerical values of the time, which finally attains its steady-state solution in the presence of heat source/sink. Moreover, the Prandtl number, sink parameter, and viscosity ratio parameter lead to a decrease in the velocity profiles, whereas the reverse phenomenon occurs with the Darcy number and source parameter. Finally, the numerical values of the Nusselt number, skin friction, and mass flux are given in the tabular forms. The main result obtained in this paper is that the velocity is higher in the case of the source parameter, whereas an opposite behavior is observed in the case of the sink parameter. 相似文献
16.
In this paper, an attempt has been made to analyze the effects of various parameters, such as Soret and Dufour effects, chemical reaction, magnetic field, porosity on the fluid flow, and heat and mass transfer of an unsteady Casson fluid flow past a flat plate. Convective boundary conditions in heat and mass transfer and slip constant on velocity have been taken into account for analysis. The governing equations of the model have been solved numerically using the MATLAB program bvp4c. The impact of various parameters of the model on the velocity, temperature, and concentration profiles has been analyzed through different graphs. To get an insight into the physical quantities of engineering interest, viz, skin friction, Sherwood number, and Nusselt number, their numerical values have been computed for various parameters. The range of the parameters used in numerical computations are , , , , , , and . It has been noticed from the tabulated values that the skin friction gets enhanced with the increase in the thermal and solutal Grashof number, whereas its reverse effects have been observed with an increase in the Biot number. In limiting case, the present study is also compared with the available results in the literature. 相似文献
17.
The present research work concentrates on viscous dissipation, Dufour, and heat source on an unsteady magnetohydrodynamics natural convective flow of a viscous, incompressible, and electrically conducting fluid past an exponentially accelerated infinite vertical plate in the existence of a strong magnetic field. The presence of the Hall current induces a secondary flow in the problem. The distinguishing features of viscous dissipation and heat flux produced due to gradient of concentration included in the model along with heat source as they are known to arise in thermal-magnetic polymeric processing. The flow equations are discretized implicitly using the finite difference method and solved using MATLAB fsolve routine. Numerical values of the primary and secondary velocities, temperature, concentration, skin friction, Nusselt number, and Sherwood number are illustrated and presented via graphs and tables for various pertinent parametric values. The Dufour effect was observed to strengthen the velocity and temperature profile in the flow domain. In contrast, due to the impact of viscous dissipation, the local Nusselt number reduces. The study also reveals that the inclusion of the chemical reaction term augments the mass transfer rate and diminishes the heat transfer rate at the plate. 相似文献
18.
Most flows which occur in nature/practical applications are fluctuating. The fluctuating motions superimposed on the main motion are complex. Further, the unsteadiness of the flow is an added reality to applications in various fields. The free convection flow of an electrically conducting fluid past different types of vertical bodies subjected to a magnetic field is studied because of its wide range of applications in astrophysics, geophysics, aerodynamics, electromagnetic pumps, the flow of liquid metals, and so forth. In the present analysis, an attempt has been made to study the thermal radiation effect on the unsteady magnetohydrodynamic flow of an incompressible elasticoviscous liquid (Walters-B' fluid model) along an infinite hot vertical permeable surface embedded in a porous medium with heat source and chemical reaction. The governing equations of motion, energy, and concentration are solved by an approximate analytical method, that is, the successive perturbation technique and numerical method (Runge–Kutta with shooting). The solution procedure rests upon the basic assumption that the unsteady boundary layer involves a steady basic flow superimposed on an unsteady flow. The most striking outcome is that the combined effect of oscillation outflow, the elasticity of the fluid, and thermal as well as mass buoyancy overrides the resistive electromagnetic force and suction at the plate to enhance the velocity so that high values of magnetic strength are not desired. Further, a higher value of the heat source parameter accelerates the momentum diffusion resulting in the escalation of the velocity field. Fall of concentration is relatively faster in cases of heavier species as well as destructive reactions. The heat transfer coefficient assumes positive values indicating the heat flows from the plate to the fluid (cooling of the bounding surface and heating of the fluid). These observations may have industrial (design of heat exchanges) and therapeutic bearings. 相似文献
19.
Madan Mohan Muduly Kharabela Swain Pravat Kumar Rath Tusar Parida Gouranga Charan Dash 《亚洲传热研究》2023,52(2):1552-1569
An analytical study is performed to investigate the thermal radiation effect on the unsteady two-dimensional magnetohydrodynamic flow of a viscoelastic incompressible fluid (Walters fluid model) along an infinite hot vertical sheet embedded in a porous medium. Further, the addition of a heat source in the energy equation as well as a chemical reaction in the concentration equation renders the present analysis realistic in the field of engineering and technology. The governing equations of mass, momentum, energy, and concentration are solved with successive perturbation techniques. The effects of pertinent parameters on fluid velocity, temperature, concentration, and bounding surface coefficients are shown graphically and in tabular form. The salient feature of the present study is to impose control on magnetic field strength vis-à-vis electromagnetic force by regulating voltage in the electric circuit. The important findings are: the elasticity property of the fluid is more sensitive to heated bounding surface consequently free convection current in enhancing the velocity near the plate than the inherent property viscosity. This outcome contributes to the design requirement to control the flow near the heated surface, higher values of frequency parameters contribute to the attainment of a free stream state in temperature distribution. Besides the aforesaid outcome, the present model is conducive to thinning of boundary layer as the elasticity, magnetic as well as free convection parameters enhance the force coefficients at the bounding surface. 相似文献
20.