首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seo K  Kim I  Jung S  Jo M  Park S  Park J  Shin J  Biju KP  Kong J  Lee K  Lee B  Hwang H 《Nanotechnology》2011,22(25):254023
We demonstrated analog memory, synaptic plasticity, and a spike-timing-dependent plasticity (STDP) function with a nanoscale titanium oxide bilayer resistive switching device with a simple fabrication process and good yield uniformity. We confirmed the multilevel conductance and analog memory characteristics as well as the uniformity and separated states for the accuracy of conductance change. Finally, STDP and a biological triple model were analyzed to demonstrate the potential of titanium oxide bilayer resistive switching device as synapses in neuromorphic devices. By developing a simple resistive switching device that can emulate a synaptic function, the unique characteristics of synapses in the brain, e.g. combined memory and computing in one synapse and adaptation to the outside environment, were successfully demonstrated in a solid state device.  相似文献   

2.
The development of energy‐efficient artificial synapses capable of manifoldly tuning synaptic activities can provide a significant breakthrough toward novel neuromorphic computing technology. Here, a new class of artificial synaptic architecture, a three‐terminal device consisting of a vertically integrated monolithic tungsten oxide memristor, and a variable‐barrier tungsten selenide/graphene Schottky diode, termed as a ‘synaptic barrister,’ are reported. The device can implement essential synaptic characteristics, such as short‐term plasticity, long‐term plasticity, and paired‐pulse facilitation. Owing to the electrostatically controlled barrier height in the ultrathin van der Waals heterostructure, the device exhibits gate‐controlled memristive switching characteristics with tunable programming voltages of 0.2?0.5 V. Notably, by electrostatic tuning with a gate terminal, it can additionally regulate the degree and tuning rate of the synaptic weight independent of the programming impulses from source and drain terminals. Such gate tunability cannot be accomplished by previously reported synaptic devices such as memristors and synaptic transistors only mimicking the two‐neuronal‐based synapse. These capabilities eventually enable the accelerated consolidation and conversion of synaptic plasticity, functionally analogous to the synapse with an additional neuromodulator in biological neural networks.  相似文献   

3.
Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs 1-4). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag(2)S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag(2)S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag(2)S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.  相似文献   

4.
Inspired by the biological neuromorphic system, which exhibits a high degree of connectivity to process huge amounts of information, photonic memory is expected to pave a way to overcome the von Neumann bottleneck for nonconventional computing. Here, a photonic flash memory based on all‐inorganic CsPbBr3 perovskite quantum dots (QDs) is demonstrated. The heterostructure formed between the CsPbBr3 QDs and semiconductor layer serves as a basis for optically programmable and electrically erasable characteristics of the memory device. Furthermore, synapse functions including short‐term plasticity, long‐term plasticity, and spike‐rate‐dependent plasticity are emulated at the device level. The photonic potentiation and electrical habituation are implemented and the synaptic weight exhibits multiple wavelength response from 365, 450, 520 to 660 nm. These results may locate the stage for further thrilling novel advances in perovskite‐based memories.  相似文献   

5.
随着数据信息的爆炸性增长和微电子加工工艺逼近物理极限,互补金属氧化物半导体(CMOS)器件难以应用于大规模神经形态器件的构建。采用非CMOS器件实现突触可塑性模拟被认为是后摩尔时代构造人工神经网络的关键。在众多的非CMOS器件中,忆阻器具有电导可调、结构简单等优点,被认为是再现神经突触功能、实现计算存储一体化的基础元件。在众多类型的忆阻器中,基于电化学金属化机制(ECM)的忆阻器具有机理明确、可超高密度集成、对材料属性不敏感等优点,特别适合应用于电子突触的构建。但ECM电子突触存在着电导可控性不足的问题,制约着高性能神经形态器件的实现。国内外研究人员针对ECM电子突触的电导可控性展开了大量研究。本综述从器件结构和材料角度梳理了ECM电子突触电导可控性的优化方法。  相似文献   

6.
The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior.  相似文献   

7.
Neuromorphic computing consisting of artificial synapses and neural network algorithms provides a promising approach for overcoming the inherent limitations of current computing architecture. Developments in electronic devices that can accurately mimic the synaptic plasticity of biological synapses, have promoted the research boom of neuromorphic computing. It is reported that robust ferroelectric tunnel junctions can be employed to design high-performance electronic synapses. These devices show an excellent memristor function with many reproducible states (≈200) through gradual ferroelectric domain switching. Both short- and long-term plasticity can be emulated by finely tuning the applied pulse parameters in the electronic synapse. The analog conductance switching exhibits high linearity and symmetry with small switching variations. A simulated artificial neural network with supervised learning built from these synaptic devices exhibited high classification accuracy (96.4%) for the Mixed National Institute of Standards and Technology (MNIST) handwritten recognition data set.  相似文献   

8.
Memristive synapses based on resistive switching are promising electronic devices that emulate the synaptic plasticity in neural systems. Short‐term plasticity (STP), reflecting a temporal strengthening of the synaptic connection, allows artificial synapses to perform critical computational functions, such as fast response and information filtering. To mediate this fundamental property in memristive electronic devices, the regulation of the dynamic resistive change is necessary for an artificial synapse. Here, it is demonstrated that the orientation of mesopores in the dielectric silica layer can be used to modulate the STP of an artificial memristive synapse. The dielectric silica layer with vertical mesopores can facilitate the formation of a conductive pathway, which underlies a lower set voltage (≈1.0 V) compared to these with parallel mesopores (≈1.2 V) and dense amorphous silica (≈2.0 V). Also, the artificial memristive synapses with vertical mesopores exhibit the fastest current increase by successive voltage pulses. Finally, oriented silica mesopores are designed for varying the relaxation time of memory, and thus the successful mediation of STP is achieved. The implementation of mesoporous orientation provides a new perspective for engineering artificial synapses with multilevel learning and forgetting capability, which is essential for neuromorphic computing.  相似文献   

9.
Just as biological synapses provide basic functions for the nervous system, artificial synaptic devices serve as the fundamental building blocks of neuromorphic networks; thus, developing novel artificial synapses is essential for neuromorphic computing. By exploiting the band alignment between 2D inorganic and organic semiconductors, the first multi‐functional synaptic transistor based on a molybdenum disulfide (MoS2)/perylene‐3,4,9,10‐tetracarboxylic dianhydride (PTCDA) hybrid heterojunction, with remarkable short‐term plasticity (STP) and long‐term plasticity (LTP), is reported. Owing to the elaborate design of the energy band structure, both robust electrical and optical modulation are achieved through carriers transfer at the interface of the heterostructure, which is still a challenging task to this day. In electrical modulation, synaptic inhibition and excitation can be achieved simultaneously in the same device by gate voltage tuning. Notably, a minimum inhibition of 3% and maximum facilitation of 500% can be obtained by increasing the electrical number, and the response to different frequency signals indicates a dynamic filtering characteristic. It exhibits flexible tunability of both STP and LTP and synaptic weight changes of up to 60, far superior to previous work in optical modulation. The fully 2D MoS2/PTCDA hybrid heterojunction artificial synapse opens up a whole new path for the urgent need for neuromorphic computation devices.  相似文献   

10.
For biological synapses, high sensitivity is crucial for transmitting information quickly and accurately. Compared to biological synapses, memristive ones show a much lower sensitivity to electrical stimuli since much higher voltages are needed to induce synaptic plasticity. Yet, little attention has been paid to enhancing the sensitivity of synaptic devices. Here, electrochemical metallization memory cells based on lightly oxidized ZnS films are found to show highly controllable memristive switching with an ultralow SET voltage of several millivolts, which likely originates from a two‐layer structure of ZnS films, i.e., the lightly oxidized and unoxidized layers, where the filament rupture/rejuvenation is confined to the two‐layer interface region several nanometers in thickness due to different ion transport rates in these two layers. Based on such devices, an ultrasensitive memristive synapse is realized where the synaptic functions of both short‐term plasticity and long‐term potentiation are emulated by applying electrical stimuli several millivolts in amplitude, whose sensitivity greatly surpasses that of biological synapses. The dynamic processes of memorizing and forgetting are mimicked through a 5 × 5 memristive synapse array. In addition, the ultralow operating voltage provides another effective solution to the relatively high energy consumption of synaptic devices besides reducing the operating current and pulse width.  相似文献   

11.
Ferroelectric oxides, such as Pb(Zr,Ti)O(3), are useful for electronic and photonic devices because of their ability to retain two stable polarization states, which can form the basis for memory and logic circuitry. Requirements for long-term operation of practical devices such as non-volatile RAM (random access memory) include consistent polarization switching over many (more than 10(12)) cycles of the applied electric field, which represents a major challenge. As switching is largely controlled by the motion and pinning of domain walls, it is necessary to develop suitable tools that can directly probe the ferroelectric domain structures in operating devices-thin-film structures with electrical contacts. A recently developed synchrotron X-ray microdiffraction technique complements existing microscopic probes, and allows us to visualize directly the evolution of polarization domains in ferroelectric devices, through metal or oxide electrodes, and with submicrometre spatial resolution. The images reveal two regimes of fatigue, depending on the magnitude of the electric field pulses driving the device: a low-field regime in which fatigue can be reversed with higher electric field pulses, and a regime at very high electric fields in which there is a non-reversible crystallographic relaxation of the epitaxial ferroelectric film.  相似文献   

12.
Hardware implementation of artificial synaptic devices that emulate the functions of biological synapses is inspired by the biological neuromorphic system and has drawn considerable interest. Here, a three‐terminal ferrite synaptic device based on a topotactic phase transition between crystalline phases is presented. The electrolyte‐gating‐controlled topotactic phase transformation between brownmillerite SrFeO2.5 and perovskite SrFeO3?δ is confirmed from the examination of the crystal and electronic structure. A synaptic transistor with electrolyte‐gated ferrite films by harnessing gate‐controllable multilevel conduction states, which originate from many distinct oxygen‐deficient perovskite structures of SrFeOx induced by topotactic phase transformation, is successfully constructed. This three‐terminal artificial synapse can mimic important synaptic functions, such as synaptic plasticity and spike‐timing‐dependent plasticity. Simulations of a neural network consisting of ferrite synaptic transistors indicate that the system offers high classification accuracy. These results provide insight into the potential application of advanced topotactic phase transformation materials for designing artificial synapses with high performance.  相似文献   

13.
The plethora of lattice and electronic behaviors in ferroelectric and multiferroic materials and heterostructures opens vistas into novel physical phenomena including magnetoelectric coupling and ferroelectric tunneling. The development of new classes of electronic, energy‐storage, and information‐technology devices depends critically on understanding and controlling field‐induced polarization switching. Polarization reversal is controlled by defects that determine activation energy, critical switching bias, and the selection between thermodynamically equivalent polarization states in multiaxial ferroelectrics. Understanding and controlling defect functionality in ferroelectric materials is as critical to the future of oxide electronics and solid‐state electrochemistry as defects in semiconductors are for semiconductor electronics. Here, recent advances in understanding the defect‐mediated switching mechanisms, enabled by recent advances in electron and scanning probe microscopy, are discussed. The synergy between local probes and structural methods offers a pathway to decipher deterministic polarization switching mechanisms on the level of a single atomically defined defect.  相似文献   

14.
Concomitance of diverse synaptic plasticity across different timescales produces complex cognitive processes. To achieve comparable cognitive complexity in memristive neuromorphic systems, devices that are capable of emulating short‐term (STP) and long‐term plasticity (LTP) concomitantly are essential. In existing memristors, however, STP and LTP can only be induced selectively because of the inability to be decoupled using different loci and mechanisms. In this work, the first demonstration of truly concomitant STP and LTP is reported in a three‐terminal memristor that uses independent physical phenomena to represent each form of plasticity. The emerging layered material Bi2O2Se is used for memristors for the first time, opening up the prospects for ultrathin, high‐speed, and low‐power neuromorphic devices. The concerted action of STP and LTP allows full‐range modulation of the transient synaptic efficacy, from depression to facilitation, by stimulus frequency or intensity, providing a versatile device platform for neuromorphic function implementation. A heuristic recurrent neural circuitry model is developed to simulate the intricate “sleep–wake cycle autoregulation” process, in which the concomitance of STP and LTP is posited as a key factor in enabling this neural homeostasis. This work sheds new light on the development of generic memristor platforms for highly dynamic neuromorphic computing.  相似文献   

15.
Photonic synapses combine sensing and processing in a single device, so they are promising candidates to emulate visual perception of a biological retina. However, photonic synapses with wavelength selectivity, which is a key property for visual perception, have not been developed so far. Herein, organic photonic synapses that selectively detect UV rays and process various optical stimuli are presented. The photonic synapses use carbon nitride (C3N4) as an UV-responsive floating-gate layer in transistor geometry. C3N4 nanodots dominantly absorb UV light; this trait is the basis of UV selectivity in these photonic synapses. The presented devices consume only 18.06 fJ per synaptic event, which is comparable to the energy consumption of biological synapses. Furthermore, in situ modulation of exposure to UV light is demonstrated by integrating the devices with UV transmittance modulators. These smart systems can be further developed to combine detection and dose-calculation to determine how and when to decrease UV transmittance for preventive health care.  相似文献   

16.

Optoelectronic synapses have been attracting significant attention due to their important role in visual information processing. In this work, we fabricate an all-organic optoelectronic synaptic device with a double heterojunction structure of PEDOT:PSS/poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE))/copper (II) phthalocyanine (CuPc) by a simple preparation process. The introduction of a dielectric P(VDF-TrFE) layer between PEDOT:PSS and CuPc layers benefits the trapping of charge carriers and slows down the electron-hole recombination rate. This two-terminal optoelectronic device is successfully applied to simulate synaptic functions of biological synapses by using optical pulses of 660 nm, including paired-pulse facilitation, spike-duration dependent plasticity, spike-rate dependent plasticity, spike-number dependent plasticity, and learning-experience behavior. Furthermore, the key characteristics of a nociceptor and the optical logic function of the “AND” and “OR” operations are also emulated. This work illustrates the potential of such device for constructing neuromorphic computing systems at the physical level.

  相似文献   

17.
Synapses are essential to the transmission of nervous signals. Synaptic plasticity allows changes in synaptic strength that make a brain capable of learning from experience. During development of neuromorphic electronics, great efforts have been made to design and fabricate electronic devices that emulate synapses. Three‐terminal artificial synapses have the merits of concurrently transmitting signals and learning. Inorganic and organic electronic synapses have mimicked plasticity and learning. Optoelectronic synapses and photonic synapses have the prospective benefits of low electrical energy loss, high bandwidth, and mechanical robustness. These artificial synapses provide new opportunities for the development of neuromorphic systems that can use parallel processing to manipulate datasets in real time. Synaptic devices have also been used to build artificial sensory systems. Here, recent progress in the development and application of three‐terminal artificial synapses and artificial sensory systems is reviewed.  相似文献   

18.
The translation of biological synapses onto a hardware platform is an important step toward the realization of brain‐inspired electronics. However, to mimic biological synapses, devices till?date continue to rely on the need for simultaneously altering the polarity of an applied electric field or the output of these devices is photonic instead of an electrical synapse. As the next big step toward practical realization of optogenetics inspired circuits that exhibit fidelity and flexibility of biological synapses, optically?stimulated synaptic devices without a need to apply polarity?altering electric field are needed. Utilizing a unique photoresponse in black phosphorus (BP), here reported is an all?optical pathway to emulate excitatory and inhibitory action potentials by exploiting oxidation?related defects. These optical synapses are capable of imitating key neural functions such as psychological learning and forgetting, spatiotemporally correlated dynamic logic and Hebbian spike?time dependent plasticity. These functionalities are also demonstrated on a flexible platform suitable for wearable electronics. Such low‐power consuming devices are highly attractive for deployment in neuromorphic architectures. The manifestation of cognition and spatiotemporal processing solely through optical stimuli provides an incredibly simple and powerful platform to emulate sophisticated neural functionalities such as associative sensory data processing and decision making.  相似文献   

19.
Kuzum D  Jeyasingh RG  Lee B  Wong HS 《Nano letters》2012,12(5):2179-2186
Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.  相似文献   

20.
Monolayer of 2D transition metal dichalcogenides, with a thickness of less than 1 nm, paves a feasible path to the development of ultrathin memristive synapses, to fulfill the requirements for constructing large‐scale high density 3D stacking neuromorphic chips. Herein, memristive devices based on monolayer n‐MoS2 on p‐Si substrate with a large self‐rectification ratio, exhibiting photonic potentiation and electric habituation, are successfully fabricated. Versatile synaptic neuromorphic functions, such as potentiation/habituation, short‐term/long‐term plasticity, and paired‐pulse facilitation, are successfully mimicked based on the inherent persistent photoconductivity performance and the volatile resistive switching behavior. These findings demonstrate the potential applications of ultrathin transition metal dichalcogenides for memristive synapses. These memristive synapses with the combination of photonic and electric neuromorphic functions have prospective in the applications of synthetic retinas and optoelectronic interfaces for integrated photonic circuits based on mixed‐mode electro‐optical operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号