首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adaptive control for a class of high-order nonlinear systems with time-varying full-state constraints and input saturation is investigated in this paper. To deal with time-varying constraints, a type of high-order barrier Lyapunov functions(BLFs) are constructed. Its performance can be guaranteed with the disappearance of constraints. By building fuzzy systems, unknown functions can be approximated. Together with adding a power integrator technique and the gain-update law, an adaptive controller is designed. As a result, all the constraints are not breached, and the tracking error converges to an arbitrarily small zone around the origin. Finally, a practical example and a numerical example illustrate the effectiveness of the proposed method.  相似文献   

2.
This paper presents an adaptive fuzzy control approach of multiple‐input–multiple‐output (MIMO) switched uncertain systems, which involve time‐varying full state constraints (TFSCs) and unknown disturbances. In the design procedure, the fuzzy logic systems are adopted to approximate the unknown functions in the systems. The adaptive fuzzy controller is set up by backstepping technique. According to the tangent barrier Lyapunov function (BLF‐Tan), a novel adaptive MIMO switched nonlinear control algorithm is designed. Under the rule of arbitrary switchings and the proposed control laws, it is demonstrated that all signals in the resulted system are semiglobally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of zero with TFSCs. Furthermore, the simulation example validates the effectiveness of presented control strategy.  相似文献   

3.
This article concentrates on an adaptive finite-time fault-tolerant fuzzy tracking control problem for nonstrict feedback nonlinear systems with input quantization and full-state constraints. By utilizing the fuzzy logic systems and less adjustable parameters method, the unknown nonlinear functions are addressed in each step process. In addition, a dynamic surface control technique combined with fuzzy control is introduced to tackle the variable separation problem. The problem for the effect of quantization and unlimited number of actuator faults is tackled by a damping term with smooth function in the intermediate control law. Finite-time stability is achieved by combining barrier Lyapunov functions and backstepping method. The finite-time controller is designed such that all the responses of the systems are semiglobal practical finite-time stable and ensured to remain in the predefined compact sets while tracking error converges to a small neighborhood of the origin in finite time. Finally, simulation examples are utilized to testify the validity of the investigated strategy.  相似文献   

4.
This article investigates an adaptive fuzzy tracking control problem for a class of nontriangular form systems with asymmetric time-varying full state constraints. Unknown functions are approximated by the fuzzy logic systems. A domination approach is employed to tackle the nontriangular form structure. Time-varying asymmetric barrier Lyapunov functions (ABLFs) are adopted to ensure full-state constraints satisfaction. Based on the backstepping technique and time-varying ABLFs, an adaptive controller is proposed and guarantees that all the signals in the closed-loop system are ultimately bounded and the time-varying full state constraints are met. Simulation examples are presented to further demonstrate the effectiveness of the proposed approach.  相似文献   

5.
This article studies the adaptive fuzzy finite-time quantized control problem of stochastic nonlinear nonstrict-feedback systems with full state constraints. During the control design process, fuzzy logic systems are used to identify the unknown nonlinear functions, integral barrier Lyapunov functions are employed to solve the state constrained problem. In the frame of backstepping design, an adaptive fuzzy finite-time quantized control scheme is developed. Based on the stochastic finite-time Lyapunov stability theory, it can be guaranteed that the closed-loop system is semiglobal finite-time stable in probability, and the tracking errors converge to a small neighborhood of the origin in a finite time. Finally, two simulation examples are provided to testify the effectiveness of the developed control scheme.  相似文献   

6.
This article develops an approximation-based fuzzy control scheme for nonstrict feedback stochastic nonlinear systems (NFSNS) with time-varying state constraints. The difficulty in constructing controller is how to conquer the algebraic loop problem caused by nonstrict feedback structure, as well as prevent the state constraints from violating. To dispose the time-varying state constraints, time-varying barrier Lyapunov function is incorporated into the backstepping design framework. The lumped uncertainties of NFSNS are approximated by the fuzzy logic systems. By virtue of fuzzy basis function, the algebraic loop problem is effectively handled. Theoretical analysis shows that the predefined state constraints are not violated and all signals of the closed-loop systems are bounded. Finally, simulation results substantiate the validity of the devised method.  相似文献   

7.
This paper is concerned with adaptive tracking control for switched uncertain nonlinear systems, which contain the time‐varying output constraint (TVOC) and input asymmetric saturation characteristic. In response to the unknown functions, the fuzzy logic systems are adopted. The controller is constructed by the backstepping technique. Based on the Tangent Barrier Lyapunov Function (BLF‐Tan), an adaptive switched control scheme is designed. It is demonstrated that all signals in the resulted system are semiglobally uniformly ultimately bounded with TVOC under arbitrary switchings. Furthermore, the effectiveness of presented control method is validated via the simulation example.  相似文献   

8.
This paper focuses on consensus quantized control design problem for uncertain nonlinear multiagent systems with unmeasured states. Every follower can be denoted through a system with unmeasurable states, hysteretic quantized input, and unknown nonlinearities. Fuzzy state observer and Fuzzy logic systems are employed to estimate unmeasured states and approximate unknown nonlinear functions, respectively. The hysteretic quantized input can be split into two bounded nonlinear functions to avoid chattering problem. By combining adaptive backstepping and first‐order filter signals, an observer‐based fuzzy adaptive quantized control scheme is designed for each follower. All signals exist in closed‐loop systems are semiglobally uniformly ultimately bounded, and all followers can accomplish a desired consensus results. Finally, a numerical example is employed to elaborate the effectiveness of proposed control strategy.  相似文献   

9.
This article focuses on the finite-time adaptive fuzzy control problem based on command filtering for stochastic nonlinear systems subject to input quantization. Fuzzy logic systems are employed to estimate unknown nonlinearities. In the control design, the hysteretic quantized input is decomposed into two bounded nonlinear functions, which solves the chattering problem. Meanwhile, an adaptive fuzzy controller is presented by the combination of command filter technique and backstepping control, which eliminates the computational complexity existing in traditional backstepping design. Under the proposed adaptive mechanism, all the closed-loop signals remain bounded while the desired system performance can be realized within finite time. The main significance of this work is that (1) the filtering error can be solved on the basis of the designed compensating signals; (2) the requirement of adaptive parameters is decreased to only one, which simplifies the controller design process and may improve the control performance. Two simulation examples are used to validity of the developed scheme.  相似文献   

10.
In view of the result and performance of control are affected by the existence of input constraints and requirements, adaptive multi-dimensional Taylor network (MTN) funnel control problem is studied for a class of nonlinear systems with asymmetric input saturation in this paper. Firstly, the effect of asymmetric input saturation can overcome by introducing the Gaussian error function, namely, the asymmetric saturation model is represented as a simple linear model with a bounded disturbance. Secondly, MTNs are employed to approximate the unknown functions in the controller design. Then, an adaptive MTN tracking controller is developed by blends the idea of funnel control into backstepping, which can guarantee that the tracking error always meets the given prescribed performance regarding the transient and steady state responses as well as the output of system tracks the give continuous reference signal. Finally, the effectiveness of the proposed control is demonstrated using two examples.  相似文献   

11.
针对考虑铁损的永磁同步电动机位置伺服控制中的状态约束问题,本文提出了一种基于势垒Lyapunov函数的模糊自适应反步控制策略。首先,选取模糊逻辑系统处理电动机系统中的未知非线性函数项;然后,将势垒Lyapunov函数与反步法结合对状态变量幅值进行约束,保证电动机系统的转子角速度、定子电流等状态量被限制在给定的区间内;最终构建基于势垒Lyapunov函数的模糊自适应反步控制器。仿真结果表明所设计的控制器不仅实现了有效的位置跟踪,并且将控制量和状态量都限制在合理区间内,避免了因违反状态约束而引发的安全性问题。  相似文献   

12.
In this paper, an adaptive fuzzy backstepping dynamic surface control (DSC) approach is developed for a class of MIMO nonlinear systems with input delays and state time‐varying delays. The unknown continuous nonlinear functions are expressed as the linearly parameterized form by using the fuzzy logic systems, and then, by combining the backstepping technique, the appropriate Lyapunov–Krasovskii functionals, and the ‘minimal learning parameters’ algorithms with the DSC approach, the adaptive fuzzy tracking controller is designed. Our development is able to eliminate the problem of ‘explosion of complexity’ inherent in the existing backstepping‐based methods. It is proven that the proposed design method can guarantee that all the signals in the closed‐loop system are bounded and the tracking error is smaller than a prescribed error bound. Finally, simulation results are provided to show the effectiveness of the proposed approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper focuses on the problem of adaptive control for a class of pure-feedback nonlinear systems with full-state time-varying constraints and unmodeled dynamics. By introducing a one-to-one nonlinear mapping, the constrained pure-feedback nonlinear system with state and input unmodeled dynamics is transformed into unconstrained pure-feedback system. The controller design based on the transformed novel system is proposed by using a modified dynamic surface control method. Dynamic signal and normalization signal are designed to handle dynamical uncertain terms and input unmodeled dynamics, respectively. By adding nonnegative normalization signal into the whole Lyapunov function and using the introducing compact set in the stability analysis, all signals in the whole system are proved to be semiglobally uniformly ultimately bounded, and all states can obey the time-varying constraint conditions. A numerical example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

14.
In this work, a fuzzy adaptive two-bits-triggered control is investigated for the nonlinear uncertain systems with input saturation and output constraint. The considered systems are more widespread. Without sufficient transmission resources, how to resolve the constraint issues while guarantee the control performance is difficult and challenging. Then, hyperbolic tangent function and barrier Lyapunov function are integrated with the designed auxiliary system to solve input saturation and output constraint. Meanwhile, faced with the transmission resources limitation, this work both considers the triggering condition and the control signal transmission bits. A two-bits-triggered control is proposed to economize the transmission resources. Furthermore, improved fuzzy logic systems are established to further promote the control performance. It combines with the time-varying approximation error for processing. The boundedness of all the system signals can be proved. Simulation results illustrate the validity of the proposed approach.  相似文献   

15.
In this paper, a novel indirect adaptive fuzzy controller is proposed for a class of uncertain nonlinear systems with input and output constrains. To address output and input constraints, a barrier Lyapunov function and an auxiliary design system are employed, respectively. The proposed approach is explored by employing fuzzy logic systems to tackle unknown nonlinear functions and combining the adaptive backstepping technique with adaptive fuzzy control design. Especially, the number of the online learning parameters are reduced to 2n in the closed‐loop system. It is proved that the proposed control approach can guarantee that all the signals in the closed‐loop system are bounded, and the input and output constraints are circumvented simultaneously. A numerical example with comparisons is provided to illustrate the effectiveness of the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This article studies the finite-time output regulation problem for nonlinear strict-feedback systems with completely unknown control directions and unknown functions. First, according to the necessary conditions for the solvability of the output regulation problem, the output regulation problem of nonlinear strict-feedback systems and the external system is transformed into a stabilization problem of nonlinear systems. Second, an internal model with external signals is designed. Third, based on finite time, fuzzy control, output feedback control, and Nussbaum gain functions, the control law is designed so that all signals of the closed-loop system are the semi-global practically finite-time stable (SGPFS), and the tracking error converges to a small neighborhood of the origin in a finite-time. Finally, the proposed algorithm is applied to the finite-time tracking problem of Chua's oscillator system.  相似文献   

17.
This article addresses an adaptive fuzzy practical fixed-time tracking control for nonlinear systems with unknown actuator constraints and uncertainty functions. First, fuzzy logic systems (FLSs) are used to identify uncertain functions. Then, by utilizing FLSs, backstepping technique, and finite-time stability theory, an adaptive fuzzy practical fixed-time control is proposed to obtain satisfactory tracking performance even when the actuator faults. The theoretical analysis verified that the closed-loop systems is practical fixed-time stable under the proposed control strategy, the tracking error converges to a small neighborhood of the origin in a fixed time, and the convergence time is independent of the state conditions. Finally, both numerical simulation and physical example demonstrates the effectiveness of the proposed control strategy.  相似文献   

18.
In this article, the fuzzy adaptive finite-time consensus tracking control problem for nonstrict feedback nonlinear multiagent systems with full-state constraints is studied. The finite-time control based on command filtered backstepping is proposed to guarantee the finite-time convergence and eliminate the explosion of complexity problem caused by backstepping process, and the errors in the filtering process are compensated by using error compensation mechanism. Furthermore, based on the fuzzy logic systems, the uncertain nonlinear dynamics are approximated and the problem of state variables in nonstrict feedback form is solved by using the property of basis functions. The barrier Lyapunov functions are introduced to guarantee that all system states and compensated tracking error signals are constrained in the designed regions. A simulation example is given to verify the superiority of the proposed algorithm.  相似文献   

19.
The prescribed-time output-feedback stabilization (ie, regulation of the state and control input to zero within a “prescribed” time picked by the control designer irrespective of the initial state) of a general class of uncertain nonlinear strict-feedback-like systems is considered. Unlike prior results, the class of systems considered in this article allows crossproducts of unknown parameters (without any required magnitude bounds on unknown parameters) and unmeasured state variables in uncertain state-dependent nonlinear functions throughout the system dynamics. We show that prescribed-time output-feedback stabilization (ie, both prescribed-time state estimation and prescribed-time regulation) is achieved through a novel output-feedback control design involving specially designed dynamics of an adaptation state variable and a high-gain scaling parameter in combination with a temporal transformation and a dual high-gain scaling based observer and controller design. While standard dynamic adaptation techniques cannot be applied due to crossproducts of unknown parameters and unmeasured states, we show that instead, the dynamics of the high-gain scaling parameter and adaptation parameter can be designed with temporal forcing terms to ensure that unknown parameters in system dynamics are dominated by a particular fractional power of the high-gain scaling parameter and the adaptation parameter after a subinterval (of unknown length) of the prescribed time interval. We show that the control law can be designed such that the system state and input are regulated to zero in the remaining subinterval of the prescribed time interval.  相似文献   

20.
In this article, the tracking control problem is investigated for a class of nonlinear systems in the presence of unknown disturbance, input saturation, actuator fault, and unknown control coefficient. A novel disturbance observer-based adaptive fault-tolerant tracking control strategy is proposed with regard to nonlinear systems. Based on the Gaussian error function, the auxiliary dynamic system is designed to offset effects caused by the input saturation. Moreover, the Nussbaum-type function is employed to avert control singularity and deal with the unknown control coefficient. A theoretical analysis indicates that the boundedness of all signals in the closed-loop system can be guaranteed. Finally, two examples with one concerning the dynamic point-the-bit rotary steerable drilling tool system are given to confirm the validity of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号