首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the applications of wireless sensor networks proliferate, the efficiency in supporting large sensor networks and offering security guarantees becomes an important requirement in the design of the relevant networking protocols. Geographical routing has been proven to efficiently cope with large network dimensions while trust management schemes have been shown to assist in defending against routing attacks. Once trust information is available for all network nodes, the routing decisions can take it into account, i.e. routing can be based on both location and trust attributes. In this paper, we investigate different ways to incorporate trust in location‐based routing schemes and we propose a novel way of balancing trust and location information. Computer simulations show that the proposed routing rule exhibits excellent performance in terms of delivery ratio, latency time and path optimality. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Recently, underwater wireless sensor networks (UWSNs) have attracted much research attention to support various applications for pollution monitoring, tsunami warnings, offshore exploration, tactical surveillance, etc. However, because of the peculiar characteristics of UWSNs, designing communication protocols for UWSNs is a challenging task. Particularly, designing a routing protocol is of the most importance for successful data transmissions between sensors and the sink. In this paper, we propose a reliable and energy‐efficient routing protocol, named R‐ERP2R (Reliable Energy‐efficient Routing Protocol based on physical distance and residual energy). The main idea behind R‐ERP2R is to utilize physical distance as a routing metric and to balance energy consumption among sensors. Furthermore, during the selection of forwarding nodes, link quality towards the forwarding nodes is also considered to provide reliability and the residual energy of the forwarding nodes to prolong network lifetime. Using the NS‐2 simulator, R‐ERP2R is compared against a well‐known routing protocol (i.e. depth‐based routing) in terms of network lifetime, energy consumption, end‐to‐end delay and delivery ratio. The simulation results proved that R‐ERP2R performs better in UWSNs.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Aiming at the serious impact of the typical network attacks caused by the limited energy and the poor deployment environment of wireless sensor network (WSN) on data transmission,a trust sensing based secure routing mechanism (TSSRM) with the lightweight characteristics and the ability to resist many common attacks simultaneously was proposed.Based on the analysis of the characteristics of network attack,the trust degree calculation model was constructed by combining node’s behavior with energy,at the same time the security route selection algorithm was also optimized by taking trust degree and QoS metrics into account.Performance analysis and simulation results show that TSSRM can improve the security and effectiveness of WSN.  相似文献   

4.
Considering severe resources constraints and security threat hierarchical routing protocol algorithm. The proposed routing of wireless sensor networks (WSN), the article proposed a novel protocol algorithm can adopt suitable routing technology for the nodes according to the distance of nodes to the base station, density of nodes distribution, and residual energy of nodes. Comparing the proposed routing protocol algorithm with simple direction diffusion routing technology, cluster-based routing mechanisms, and simple hierarchical routing protocol algorithm through comprehensive analysis and simulation in terms of the energy usage, packet latency, and security in the presence of node protocol algorithm is more efficient for wireless sensor networks. compromise attacks, the results show that the proposed routing  相似文献   

5.
在无线传感器网络中,分簇型路由在路由协议中占据重要的地位,该协议方便拓扑结构管理,能源利用率高,数据融合简单。文章从簇头生成、簇形成和簇路由3个角度对典型的分簇路由算法LEACH,HEED,EEUC,PEGASIS进行了系统描述,从网络生命周期和节点存活数量等方面,对比了其优缺点,结合该领域的研究现状,指出了未来研究的方向。  相似文献   

6.
无线传感器网络地理路由协议要求节点根据少量本地路由信息将数据分组传输路由到目标节点。为了消除路由环,地理路由算法通常需要将网络拓扑平面化。然而现有的平面化算法要么假设节点的通信半径是一固定值,在实际应用中不适用;要么对每一条链路都进行检测是否有交叉链路,路由维护代价很高。针对以上问题,提出一种具有高可靠性和低维护成本的地理路由协议RPR(region partitioning-based routing),其基本思想是将网络划分为规则多边形区域,并在贪心路由失败时将多边形区域内的所有节点看作一个虚拟节点进行周边路由。多边形区域间通信能够降低平均路由路径长度,从而提高了路由的可靠性。基于区域划分的网络平面化策略不需要检测和删除相交链路,因此减少了路由维护开销。模拟实验结果显示,RPR协议比现有方法的平均路由路径长度更短,路由维护开销更低。  相似文献   

7.
Artificial intelligence (AI)-based wireless sensor network technology is the future of advancement for real-time applications. With AI wireless sensor network technology, it is possible to collect data from any environment, analyze in real time, and use it to optimize processes and operations. AI wireless sensor network technology provides an unprecedented level of accuracy as well as the ability to detect even the slightest changes in a given environment. The AI-based approach uses clustering-based techniques with self-organizing map (SOM) for energy conservation in resource-constrained networks. By clustering the network, it becomes more energy efficient, as data can be shared among members of a cluster without needing to be transmitted across multiple nodes. The proposed AI cluster-based routing approach outperforms in terms of energy consumption and computational challenges of the network. The results obtained demonstrate the proposed approach to achieve lower energy consumption than the existing algorithms while providing the same level of performance in terms of throughput and latency, as well as a comparison with traditional justification techniques.  相似文献   

8.
在分析了最小跳数路由算法局限性的基础上对该算法进行了改进,充分考虑了无线传感器网络的跳数、能量、负载均衡等问题。改进后的算法使得传感器的某些节点不会因为频繁使用而迅速死亡,数据包可以沿着最优的路径向网关节点发送。仿真结果显示,改进后的算法可以有效地提高无线传感器网络的可靠性和稳定性,延长了网络的通信时间。  相似文献   

9.
This paper addresses the energy efficiency of data collection based on a concentric chain clustering topology for wireless sensor networks (WSNs). To conserve the energy dissipation of nodes spent in data routing, the paper attempts to take advantage of the two opportunities: (a) the impact of the relative positions of wireless nodes to the base station on the energy efficiency of the routing chain within each cluster; (b) the effect of the varying‐sized chains on the selection rule of cluster heads (CHs). To establish an energy‐efficient chain to connect all the nodes in a cluster, the paper proposes a principal vector projection approach, which takes into account both the position of each node and that of the base station, to determine the order to which a node can be linked into the chain in order to reduce the energy requirement of the chain. Since the CH selection rules in the concentric chains are mutually independent, solely based on their self‐cluster sizes, the multi‐hop path passing through all the CHs will consist of longer links and thus consume a significant fraction of the total energy. Thus, in order to suppress the effect of the unequal cluster sizes on decreasing the energy efficiency of the multi‐hop path of CHs, the paper offers an average‐cluster‐size‐based rule (ACSB) for each cluster in order to adapt the CH selection with both the number of active nodes in the current cluster and the average value of all cluster sizes. With these two proposed schemes, an adaptive concentric chain‐based routing algorithm is proposed which enables nodes to collaboratively reduce the energy dissipation incurred in gathering sensory data. By computer simulation, the results demonstrate that the proposed algorithm performs better than other similar protocols in terms of energy saved and lifetime increased capabilities for WSNs which deploy random sensor nodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
基于认知的无线传感器网络抗干扰路由算法   总被引:2,自引:0,他引:2  
刘斌新  蒋挺 《数字通信》2010,37(1):66-70
针对无线传感器网络受Wi—Fi等异构系统干扰日益严重的问题,在引入基于簇的动态多信道组网策略的基础上,综合考虑频谱受干扰程度、信道切换代价、节点剩余能量等因素,提出了一种认知频谱干扰的能量有效的路由(CSIEE)算法。仿真结果表明,该路由与EEPA,AODV,AODV—EA路由相比,有效地节约了传感器节点能量,延长了网络生命周期。  相似文献   

11.
Introduction of mobile sinks into a wireless sensor network can largely improve the network performance. However, sink mobility can cause unexpected changes of network topology, which may bring excessive protocol overhead for route maintenance and may offset the benefit from using mobile sinks. In this paper, we propose an efficient data‐driven routing protocol (DDRP) to address this problem. The design objective is to effectively reduce the protocol overhead for data gathering in wireless sensor networks with mobile sinks. DDRP exploits the broadcast feature of wireless medium for route learning. Specifically, each data packet carries an additional option recording the known distance from the sender of the packet to target mobile sink. The overhearing of transmission of such a data packet will gratuitously provide each listener a route to a mobile sink. Continuous such route‐learning among nodes will provide fresh route information to more and more nodes in the network. When no route to mobile sink is known, random walk routing simply is adopted for data packet forwarding. Simulation results show that DDRP can achieve much lower protocol overhead and longer network lifetime as compared with existing work while preserving high packet delivery ratio. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Clustering provides an effective way to prolong the lifetime of wireless sensor networks.One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network.Another is the mode of inter-cluster communication.In this paper,an energy-balanced unequal clustering(EBUC)protocol is proposed and evaluated.By using the particle swarm optimization(PSO)algorithm,EBUC partitions all nodes into clusters of unequal size,in which the clusters closer to the base station have smaller size.The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided.For inter-cluster communication,EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads.Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.  相似文献   

13.
郭显  冯涛  袁占亭 《通信学报》2012,33(6):133-142
分析了网络编码系统DCAR"编码+路由"发现过程存在的安全问题,提出了适用于编码感知安全路由协议的安全目标,设计了基于DCAR的编码感知安全路由协议DCASR,DCASR协议利用密码学机制保证可信路由建立和正确编码机会发现。为建模多跳无线网络特征和分析路由协议安全性,引入线程位置和线程位置相邻概念扩展安全系统逻辑LS2,提出了分析路由协议安全性的逻辑LS2-RP。LS2-RP用线程邻居集及邻居集的变化描述多跳无线网络的动态拓扑关系,用广播规则模型化多跳无线网络广播通信特征。最后,用LS2-RP协议编程语言描述了DCASR协议,用LS2-RP的谓词公式和模态公式描述DCASR协议的安全属性,用LS2-RP逻辑证明系统分析了DCASR协议的安全性,证明DCASR协议能够满足安全目标。  相似文献   

14.
Underwater Wireless Sensor Networks (UWSNs) have attracted attention from academics and industries due to many applications such as pollution monitoring, military, tsunami warning, and underwater exploration. One of the effective factors in these applications is efficient communication between underwater sensors. But this process is very challenging in UWSNs due to special conditions and underwater harsh environments. Therefore, designing routing protocols for efficient communication between sensors and sink is an important issue in UWSNs. In this context, this paper proposed a location-free Reliable and QoS-Aware Routing (RQAR) protocol for mobile sink UWSNs. RQAR designed using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and does not require the position information of the sensor nodes, which is cumbersome and difficult to obtain. Proposed protocol considers multiple parameters including link quality, hop count, congestion, and residual energy for qos support, and reliable data delivery RQAR also minimizes the effects of hole occurrence by increasing the transmission range as much as possible and ensures communication stability. The simulation results using NS2 showed the superiority of RQAR in improving end-to-end delay, packet delivery ratio, and network throughput compared to the previous methods.  相似文献   

15.
Energy conservation and fault tolerance are two critical issues in the deployment of wireless sensor networks (WSNs). Many cluster‐based fault‐tolerant routing protocols have been proposed for energy conservation and network lifetime maximization in WSNs. However, these protocols suffer from high frequency of re‐clustering as well as extra energy consumption to tolerate failures and consider only some very normal parameters to form clusters without any verification of the energy sufficiency for data routing. Therefore, this paper proposes a cluster‐based fault‐tolerant routing protocol referred as CFTR. This protocol allows higher energy nodes to become Cluster Heads (CHs) and operate multiple rounds to diminish the frequency of re‐clustering. Additionally, for the sake to get better energy efficiency and balancing, we introduce a cost function that considers during cluster formation energy cost from sensor node to CH, energy cost from CH to sink, and another significant parameter, namely, number of cluster members in previous round. Further, the proposed CFTR takes care of nodes, which have no CH in their communication range. Also, it introduces a routing algorithm in which the decision of next hop CH selection is based on a cost function conceived to select routes with sufficient energy for data transfer and distribute uniformly the overall data‐relaying load among the CHs. As well, a low‐overhead algorithm to tolerate the sudden failure of CHs is proposed. We perform extensive simulations on CFTR and compare their results with those of two recent existing protocols to demonstrate its superiority in terms of different metrics.  相似文献   

16.
~~An energy efficient clustering routing algorithm for wireless sensor networks1. Mainwaring A, Polastre J, Szewczyk R, et al. Wireless sensor networks for habitat monitoring. Proceedings of the ACM International Workshop on Wireless Sensor Networks and A…  相似文献   

17.
王辛果 《电讯技术》2016,56(7):750-754
无线传感器网络通常使用低占空比的异步睡眠调度来降低节点能耗。由于发送节点在接收节点醒来后才能向其发送数据,这将引入额外的等待时延。在最近的一些任播路由机制中,发送节点动态地选择最先醒来的候选节点转发数据,以最小化等待时延。但是,由于从最先醒来的候选节点到基站的时延可能并不低,任播路由机制并不一定能最小化端到端总时延。为此,提出了一种适用于异步无线传感器网络的机会路由机制,将路由决策建模为强马尔科夫过程,并根据最优停止理论推导出该过程一种简化的停止规则。仿真结果表明,节点到基站的最大端到端时延仅为基于地理位置的机会路由的68.5%。  相似文献   

18.
无线多媒体传感器网络中存在多种类型的数据,而且这些数据的服务质量需求并不相同。针对这种情况,提出一种基于蚁群优化的区分服务路由协议(DSACO, differentiated service and ant colony optimization based routing protocol)。DSACO在网络分层的基础上通过限制蚂蚁的搜索范围以减少建立路由的时间和能量消耗,对不同服务质量需求的数据采用区分服务路由以满足不同类型数据的服务质量需求。仿真结果表明,新协议能够为多媒体数据的传输提供更好的QoS保障,在数据传输的平均时延、分组丢失率和能量消耗上优于已有路由协议。  相似文献   

19.
黄芬 《电视技术》2012,36(13):74-77
DBR(Depth Based Routing)协议是水下无线传感器网络中第一个基于深度信息的路由协议。分析了水下无线传感器网络中DBR路由协议特性,详细阐述了DBR协议中的网络拓扑结构、数据转发机制及其存在的一些问题。并简单介绍了目前有关DBR的改进路由协议。  相似文献   

20.
Optimized routing (from source to sink) in wireless sensor networks (WSN) constitutes one of the key design issues in prolonging the lifetime of battery‐limited sensor nodes. In this paper, we explore this optimization problem by considering different cost functions such as distance, remaining battery power, and link usage in selecting the next hop node among multiple candidates. Optimized selection is carried out through fuzzy inference system (FIS). Two differing algorithms are presented, namely optimized forwarding by fuzzy inference systems (OFFIS), and two‐layer OFFIS (2L‐OFFIS), that have been developed for flat and hierarchical networks, respectively. The proposed algorithms are compared with popular routing protocols that are considered as the closest counterparts such as minimum transmit energy (MTE) and low energy adaptive clustering hierarchy (LEACH). Simulation results demonstrate the superiority of the proposed algorithms in extending the WSN lifetime. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号