首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Nanocrystalline Fe–Ni–Cr–Al alloy coatings with ~4 wt-%Al were produced using the unbalanced magnetron sputter deposition technique with a composite 310S stainless steel target embedded with aluminium plugs. The oxidation behaviour of the coatings was studied, during which complete external α-Al2O3 scales were formed. During isothermal oxidation tests at 950, 1000, and 1050°C, the oxidation kinetics followed an essentially parabolic rate law, and the oxidation constants were measured to be 2·06 × 10-3, 4·23 × 10-3, and 1·14 × 10-2 mg2 cm-4 h-1 respectively. During a cyclic oxidation test at 1000°C the α-Al2O3 scale showed good scale spallation resistance. The surface hardness of the coatings was measured with a Knoop indentor before and after oxidation. After oxidation, the coating surface hardness was still significantly higher than that of the uncoated specimen, demonstrating the potential this coating has in the improvement of high temperature erosion resistance.  相似文献   

2.
The oxidation kinetics of thin films of dilute Fe–Ni solid solutions (0.17, 0.54, 0.65, 0.91, and 1.87 at % Ni) on single-crystal Si substrates are studied. The oxidation rate of the films is found to decrease with increasing Ni concentration. The predominant phase in all of the oxide layers is Fe2O3, independent of the oxidation conditions. It is shown that, at an Ni content of about 1 at %, the composition dependences of the oxide thickness, refractive index, extinction coefficient, and apparent activation energy for oxidation show extrema. The mechanism of film oxidation is discussed.  相似文献   

3.
The temperature dependence of surface tension and density for Fe–Cr–Mo (AISI 4142), Fe–Cr–Ni (AISI 304), and Fe–Cr–Mn–Ni TRIP/TWIP high-manganese (16 wt% Cr, 7 wt% Mn, and 3–9 wt% Ni) liquid alloys are investigated using the conventional maximum bubble pressure (MBP) and sessile drop (SD) methods. In addition, the surface tension of liquid steel is measured using the oscillating droplet method on electromagnetically levitated (EML) liquid droplets at the German Aerospace Centre (DLR, Cologne). The data of thermophysical properties for Fe–Cr–Mn–Ni is of major importance for modeling of infiltration and gas atomization processes in the prototyping of a “TRIP-Matrix-Composite.” The surface tension of TRIP/TWIP steel increased with an increase in temperature in MBP as well as in SD measurement. The manganese evaporation with the conventional measurement methods is not significantly high within the experiments (?Mn < 0.5 %). The temperature coefficient of surface tension (dσ/dT) is positive for liquid steel samples, which can be explained by the concentration of surface active elements. A slight influence of nickel on the surface tension of Fe–Cr–Mn–Ni steel was experimentally observed where σ is decreased with increasing nickel content. EML measurement of high-manganese steel, however, is limited to the undercooling state of the liquid steel. The manganese evaporation strongly increased in excess of the liquidus temperature in levitation measurements and a mass loss of droplet of 5 % was observed.  相似文献   

4.
The transition of solidified phases in Fe–Cr–Ni and Fe–Ni alloys was investigated from low to high growth rate ranges using a Bridgman type furnace, laser resolidification and casting into a substrate from superheated or undercooled melt. The ferrite–austenite regular eutectic growth, which is difficult to find in typical production conditions of stainless steels, was confirmed under low growth rate conditions. The transition velocity between eutectic and ferrite cell growth had a good agreement predicted by the phase selection criterion. Which of either ferrite or austenite is easier to form in the high growth range was discussed from the point of nucleation and growth. Metastable austenite formation in stable primary ferrite composition was mainly a result of growth competition between ferrite and austenite. For a binary Fe–Ni system, a planar metastable austenite in the steady state, simultaneous growth such as eutectic and banded growth between ferrite and austenite in an initial transient region are confirmed.  相似文献   

5.
The isothermal oxidation of a new Fe–Ni–Cr-based alloy has been investigated in pure steam at 750 °C for exposure time up to 500 h using secondary electron microscope (SEM)/ X-ray energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Results showed that the alloy was oxidized approximately following a parabolic law with a parabolic rate constant kp of 2.36 × 10?13 g2/m4/s. As revealed by SEM/EDS and XRD results, a duplex-layered external oxide scale was formed, consisting of a thin outer layer of Ni(Fe, Al)2O4 and a thicker inner layer of (Cr, Mn)2O3. Underneath the external oxide scale, the internal oxidation of Ti to be TiO2 occurred particularly along the grain boundaries of the matrix alloy. Internal oxide of Al2O3 was also observed but at a deeper depth. Based on the detailed compositional and microstructural characterization of the oxidized zone, the mechanism of the external and internal oxidation in steam is presented.  相似文献   

6.
The rational design of efficient and cost-effective electrocatalysts for oxygen evolution reaction (OER) with sluggish kinetics, is imperative to diverse clean energy technologies. The performance of electrocatalyst is usually governed by the number of active sites on the surface. Crystalline/amorphous heterostructure has exhibited unique properties and opens new paradigms toward designing electrocatalysts with abundant active sites for improved performance. Hence, Fe doped Ni–Co phosphite (Fe-NiCoHPi) electrocatalyst with cauliflower-like structure, comprising crystalline@amorphous core–shell nanorod, is reported. The experiments uncover that Fe is enriched in the amorphous shell due to the flexibility of the amorphous component. Further density functional theory calculations indicate that the strong electronic interaction between the enriched Fe in the amorphous shell and crystalline core host at the core–shell interface, leads to balanced binding energies of OER intermediates, which is the origin of the catalyst-activity. Eventually, the Fe-NiCoHPi exhibits remarkable activity, with low overpotentials of only 206 and 257 mV at current density of 15 and 100 mA cm−2. Unceasing durability over 90 h is achieved, which is superior to the effective phosphate electrocatalysts. Although the applications at high current remain challenges , this work provides an approach for designing advanced OER electrocatalysts for sustainable energy devices.  相似文献   

7.
In the present work, intermetallic alloys Fe–Si and Fe–Al (Fe3Si–C–Cr and Fe3Al-C), produced by induction melting, were evaluated regarding their oxidation and abrasive resistance. The tests performed were quasi-isothermal oxidation, cyclic oxidation, and dry sand/rubber wheel abrasion. As reference, the ASTM A297-HH grade stainless steel was tested in the same conditions. In the oxidation tests, the Fe–Al based alloy presented the lowest oxidation rate, and the Fe–Si based alloy achieved the best results in the abrasion test, showing better performance than the HH type stainless steel.  相似文献   

8.
Fe–35Ni–25Cr–0.4C alloys with different compositions are aged between 750 and 1150°C up to ~10,000?h. As-cast microstructure contains interdendritic carbides of type M7C3 (‘Cr7C3’) and MC (‘NbC’). At service temperatures, M7C3 transform into M23C6 (‘Cr23C6’) within hours. Then, a hardening precipitation of secondary intragranular M23C6 occurs over hundreds of hours, the nose of the ‘temperature-time-hardening’ curve being around 1000°C. G phase forms after long aging; its solvus temperature and formation kinetics depend on silicon content. Z phase is observed after long aging at 950°C or above. G and Z phases form at the expense of MC. Very long aging causes nitridation under air, with first a transformation of M23C6 into chromium-rich M2X carbonitrides (X?=?C,N), then of MC into chromium-rich MX carbonitrides.  相似文献   

9.
Nano-Micro Letters - Ammonia borane is widely used in most areas including fuel cell applications. The present paper describes electrochemical behavior of ammonia borane in alkaline media on the...  相似文献   

10.
Hot deformation characteristics of a Fe-base superalloy were studied at various temperatures from 1000–1200°C under strain rates from 0·001–1 s − 1 using hot compression tests. Processing maps for hot working are developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate and interpreted by a dynamic materials model. Hot deformation equation was given to characterize the dependence of peak stress on deformation temperature and strain rate. Hot deformation apparent activation energy of the Fe–24Ni–11Cr–1Mo–3Ti superalloy was determined to be about 499 kJ/mol. The processing maps obtained in a strain range of 0·1–0·7 were essentially similar, indicating that strain has no significant influence on it. The processing maps exhibited a clear domain with a maximum of about 40–48% at about 1150°C and 0·001 s − 1.  相似文献   

11.
This paper overviews the effects of some precipitates in Fe–Ni base boilers materials. The volume fraction of these precipitates is usually below 10% for maintaining the microstructure stability and manufacture ability. They appear in a number of morphologies, but all of them improve the creep strength when they exist in small size. For the alloys serviced below 650°C, the strengthening precipitates disperse within the matrix and maintain their diameter below 100 nm during long time exposure. For the alloys serviced above 650°C, the strengthening precipitates are normally larger than 100 nm in equivalent diameter. They may experience long growth duration and thus keep their size below 500 nm. Meanwhile, the precipitates may improve creep strength when they are dispersed over the grain boundaries.  相似文献   

12.
Li  Tingting  Fu  Shenna  Ma  Li  Yang  Yanling  Wu  Taichun  Wei  Shuang  Fu  Qinglan  Xie  Fei  Zhan  Wang 《Journal of Materials Science: Materials in Electronics》2022,33(28):22319-22331
Journal of Materials Science: Materials in Electronics - Prussian blue analogs (PBAs) are multifunctional precursors for the synthesis of a series of transition metal nanomaterials. In this study,...  相似文献   

13.
Relations between microstructure, phase transformations and creep resistance of austenitic Fe–Ni–Cr alloys are investigated. As-cast alloys with different silicon contents and an ex-service tube are submitted to laboratory agings to trigger specific phase transformations, and subsequently creep-tested at 950°C under stresses of 24–48?MPa. As-cast microstructures contain interdendritic chromium-rich M7C3 carbides with niobium-rich MC carbides. After aging at 950°C, primary M7C3 carbides transform into chromium-rich M23C6 carbides, associated to a loss in creep strength. The G phase present in the ex-service alloy is reversed into MC carbides by a heat treatment at 1100°C, associated to a slight decrease in creep resistance. Besides, the addition of silicon is highly detrimental to creep strength. Results can be used for alloy design.  相似文献   

14.
Reformer furnaces tubes work under high temperature and pressure for a long time, which are very critical conditions for creep deformation and life of most common materials. Cast austenitic Fe–Cr–Ni alloys in the widely know HP grades are used for reformer tubes to allow a good service at temperatures that can be close to 1000 °C. This paper reports a study devoted to the damage analysis of reformer furnace tubes after more than 100,000 h of service. Tubes, made of a HP grade modified with Nb and Ti additions, were inspected in situ by a laser optic system to measure their internal diameter and evaluate creep deformation. With the aim of developing a criterion for deciding the substitution of components, samples of as cast material and samples, cut from the most deformed tubes put out of service, were considered to check changes of mechanical properties and metallurgical characteristics. Tensile and creep tests were carried out; moreover the metallographic observations included optical and scanning electron microscopy and energy dispersive X-ray microanalysis in order to measure locally the chemical composition.  相似文献   

15.
The superconducting magnetoresistance effect (SMRE) observed in trilayers (TLs) consisting of a superconducting (SC) Nb interlayer and two outer ferromagnetic (FM) Ni80Fe20 and Co layers is studied. We observed that the SMRE exhibits a pronounced magnitude (R max?R min)/R nor of order 45 % and 86 % for the NiFe-based and Co-based TLs, respectively. For the NiFe-based TLs, the dynamic transport behavior of the observed SMRE is presented through detailed IV characteristics that exhibit a nonlinear character even extremely close to the critical temperature, $T_{c}^{\mathrm{SC}}$ . Also, the detailed evolution of the longitudinal and transverse components of the TL magnetization from close to well below $T_{c}^{\mathrm{SC}}$ is presented. For the Co-based TLs, the obtained magnetization and transport data justify that a strict requisite for the observation of a pronounced SMRE across $T_{c}^{\mathrm{SC}}$ is that the coercivities of the FM layers should be similar. The combined data on the NiFe-based and Co-based TLs show that across the superconducting transition the SMRE is influenced by out-of-plane stray-fields, attaining pronounced values when the respective coercive fields coincide, thus enabling the transverse magnetic coupling of the outer FM layers through the SC interlayer.  相似文献   

16.
Densities and their temperature coefficients of liquid Cr–Fe, Fe–Ni, and Cr–Ni binary alloys have been measured containerless using the technique of electromagnetic levitation. Data have been obtained in a wide temperature range including the supercooled region. The density measurements indicate that these binary systems have a small and positive excess volume, whereas the excess free energies are negative. The temperature coefficients of these alloys can be estimated from those of the pure components. Hence, possible contributions from the temperature dependence of the excess volume can be ignored to calculate the temperature coefficient of density.  相似文献   

17.
Sibirev  N. V.  Huang  H.  Ubyivovk  E. V.  Lv  R.  Zhao  D.  Guang  Q.  Berdnikov  Yu. S.  Yan  X.  Koryakin  A. A.  Shtrom  I. V. 《Technical Physics Letters》2019,45(2):159-162
Technical Physics Letters - Arrays of GaN nanowires (NWs) and nanotubes (NTs) have been grown by metalorganic vapor phase epitaxy using a gold–nickel film as the catalyst. The simultaneous...  相似文献   

18.
Delicate design of nanostructures for oxygen-evolution electrocatalysts is an important strategy for accelerating the reaction kinetics of water splitting. In this work, Ni–Fe layered-double-hydroxide (LDH) nanocages with tunable shells are synthesized via a facile one-pot self-templating method. The number of shells can be precisely controlled by regulating the template etching at the interface. Benefiting from the double-shelled structure with large electroactive surface area and optimized chemical composition, the hierarchical Ni–Fe LDH nanocages exhibit appealing electrocatalytic activity for the oxygen evolution reaction in alkaline electrolyte. Particularly, double-shelled Ni–Fe LDH nanocages can achieve a current density of 20 mA cm−2 at a low overpotential of 246 mV with excellent stability.  相似文献   

19.
During this study, new Ni-base alloys precipitating cubic γ′ were developed which shall be used for the production of polycrystalline nanoporous membranes. The polycrystalline nanoporous membranes are produced through a combination of cold rolling and heat treatment in order to get directional coarsening of the γ′-phase which is selectively dissolved afterwards. Conventional Ni-based superalloys have a γ/γ′ -microstructure with cubic γ′-precipitates and show the needed etching behaviour but their high strength and limited ductility at room temperature do not allow to produce the polycrystalline nanoporous membranes by means of the before mentioned method. Thus, the new alloys with simpler composition were developed which have a γ/γ′ microstructure. The alloy Ni–13Fe–8Al–4Ti (composition in atomic percent) which was produced by Schmitz (Cullivier, ISBN 978-3-86955-523-2, 16) served as basis and showed the promising characteristics. To obtain cubic γ′-precipitates, the misfit was estimated to values of at least |0.2| % by a method presented by Mishima (Acta Metall 33:1161–1169, 23). Further, the phase compositions as well as phase volume fractions of γ-matrix and γ′-phase were calculated by means of Thermocalc® simulations (database: TTNi7). The etching behaviour of the new alloys was adjusted by adding chromium and molybdenum which passivate the γ-matrix so that the γ′-precipitates dissolve during the leaching process. The well-aligned cubic γ′-precipitates were obtained by partially replacing titanium by niobium. Furthermore, the hardness could be significantly lowered compared to conventional superalloys by reduction of alloying elements. Hence, the promising alloys were found to get directional coarsening of the γ′-precipitates in a combined process of cold rolling and heat treatment.  相似文献   

20.
Abstract

Iron and model alloys containing 1, 2, and 3wt% Si were reacted with dry and wet CO2 gases at 800°C. All oxidised in dry CO2 according to approximately linear kinetics. Additions of H2O accelerated the reaction until steady-state parabolic kinetics were achieved. However, the effect of H2O was small in the steady-state reaction stage of Fe – 3Si. Alloy reaction products were a duplex scale consisting of an outer FeO+Fe3O4 layer and an inner FeO+Fe2SiO4 layer, plus an internal oxidation zone, in all gases. In Fe – 1Si, amorphous SiO2 precipitates in the internal oxidation zone grew with rod-like morphologies in all gases. However, internal amorphous SiO2 precipitates grown in Fe – 2Si and Fe – 3Si formed network patterns. Internal penetration rates were initially rapid in Fe – 1Si, but slowed considerably at longer times. In Fe – 3Si, the internal oxidation zone grew wider in the first 20 h of reaction, and then remained constant in dry gas. In the wet gases this zone subsequently diminished, and disappeared after 50 h reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号