首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
随着锂电池在新能源汽车和大型定置装备上的应用,稀有金属锂(Li)供应短缺问题日益凸显。因而发展钠离子可充电池尤其是室温钠离子电池受到了全球范围内的重视。相比于其他正极材料,铁基正极材料具有电位高,储量丰富等优势。综述了当前国内外各类钠离子铁基正极材料最新研究进展,介绍了其结构特征和电化学性能,总结了各类型铁基正极材料应用于钠离子电池的优缺点。最后提出新型的高电压聚硫酸根离子铁基正极材料具有诱人的应用前景。  相似文献   

3.
Rechargeable flexible solid Zn‐air battery, with a high theoretical energy density of 1086 Wh kg?1, is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal‐free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co–Nx–C active sites via defect engineering. As‐fabricated Co/N/O tri‐doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn‐air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn‐air battery, a high open‐circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm?2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials.  相似文献   

4.
With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium-ion batteries, zinc-ion batteries, zinc–air batteries, and lithium–air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed.  相似文献   

5.
生物模板法合成锂离子电池电极材料研究进展   总被引:1,自引:1,他引:0  
锂离子电池是一类极具潜力的新型二次化学储能器件,被广泛应用于便携式电子设备、电动交通工具和智能电网等领域。高性能电极材料的设计和合成是获得高能量密度、长循环寿命、高安全性锂离子电池的关键。文章针对锂离子电池电极材料存在制备工艺复杂、结构难以控制、活性物质利用率低、循环稳定性和倍率性能差等问题,从生物资源高效利用角度出发,结合生物材料尺寸均匀、形态多变、结构精密、环境友好等优点,综述了生物模板法合成锂离子电池电极材料的研究进展,并对该领域的发展方向进行了展望。  相似文献   

6.
7.
胡宗倩  谢凯 《材料导报》2011,25(17):46-50
综述了锂硫电池硫正极材料的研究现状。针对锂硫电池目前存在的问题,展望了其发展趋势,并指出硫/有序多孔碳纳米复合材料对提升锂硫电池性能有重要研究价值;同时形成三维空间传导网络的导电添加剂和具有良好粘接性、导电性及电化学稳定性的粘结剂对锂硫电池性能提升也具有重要作用。  相似文献   

8.
层状锂锰氧化物作为锂离子电池的正极材料,具有无毒、低成本、能量密度高等优点。综述了近年来锂离子电池层状正极材料的研究进展,主要讨论了层状锂锰氧化物掺杂改性对其结构和电化学性能的影响,以及多元复合材料LiMnxCoyNi1-x-yO2的结构特性、制备方法、各金属元素含量的变化对其电性能的影响。  相似文献   

9.
10.
Despite the imminent commercial introduction of Li‐ion batteries in electric drive vehicles and their proposed use as enablers of smart grids based on renewable energy technologies, an intensive quest for new electrode materials that bring about improvements in energy density, cycle life, cost, and safety is still underway. This Progress Report highlights the recent developments and the future prospects of the use of phases that react through conversion reactions as both positive and negative electrode materials in Li‐ion batteries. By moving beyond classical intercalation reactions, a variety of low cost compounds with gravimetric specific capacities that are two‐to‐five times larger than those attained with currently used materials, such as graphite and LiCoO2, can be achieved. Nonetheless, several factors currently handicap the applicability of electrode materials entailing conversion reactions. These factors, together with the scientific breakthroughs that are necessary to fully assess the practicality of this concept, are reviewed in this report.  相似文献   

11.
12.
Lithium‐ion batteries have proven to be extremely attractive candidates for applications in portable electronics, electric vehicles, and smart grid in terms of energy density, power density, and service life. Further performance optimization to satisfy ever‐increasing demands on energy storage of such applications is highly desired. In most of cases, the kinetics and stability of electrode materials are strongly correlated to the transport and storage behaviors of lithium ions in the lattice of the host. Therefore, information about structural evolution of electrode materials at an atomic scale is always helpful to explain the electrochemical performances of batteries at a macroscale. The annular‐bright‐field (ABF) imaging in aberration‐corrected scanning transmission electron microscopy (STEM) allows simultaneous imaging of light and heavy elements, providing an unprecedented opportunity to probe the nearly equilibrated local structure of electrode materials after electrochemical cycling at atomic resolution. Recent progress toward unraveling the atomic‐scale structure of selected electrode materials with different charge and/or discharge state to extend the current understanding of electrochemical reaction mechanism with the ABF and high angle annular dark field STEM imaging is presented here. Future research on the relationship between atomic‐level structure evolution and microscopic reaction mechanisms of electrode materials for rechargeable batteries is envisaged.  相似文献   

13.
《工程(英文)》2018,4(6):831-847
Rechargeable lithium-ion batteries (LIBs) afford a profound impact on our modern daily life. However, LIBs are approaching the theoretical energy density, due to the inherent limitations of intercalation chemistry; thus, they cannot further satisfy the increasing demands of portable electronics, electric vehicles, and grids. Therefore, battery chemistries beyond LIBs are being widely investigated. Next-generation lithium (Li) batteries, which employ Li metal as the anode and intercalation or conversion materials as the cathode, receive the most intensive interest due to their high energy density and excellent potential for commercialization. Moreover, significant progress has been achieved in Li batteries attributed to the increasing fundamental understanding of the materials and reactions, as well as to technological improvement. This review starts by summarizing the electrolytes for next-generation Li batteries. Key challenges and recent progress in lithium-ion, lithium–sulfur, and lithium–oxygen batteries are then reviewed from the perspective of energy and chemical engineering science. Finally, possible directions for further development in Li batteries are presented. Next-generation Li batteries are expected to promote the sustainable development of human civilization.  相似文献   

14.
Rechargeable magnesium batteries (RMBs) that use pure Mg or Mg alloy as anode and materials allowing Mg ions to insert/extract as cathode have many advantages such as high energy density, environmental friendliness, low cost, and safety of handling. RMBs are regarded as a promising candidate for portable power sources and heavy load energy devices. However, there are still some technological issues impeding their commercial application. The most important issue is the absence of applicable cathode materials because of the high charge density, strong polarization effect, and very slow insertion/extraction speed of Mg2+ ions. In recent years, the research reports on the cathode materials of RMBs have increased significantly. Here, an extensive number of research papers are reviewed in terms of the microstructure characteristics of cathode materials for RMBs. The status and issues of cathode materials are analyzed and discussed in detail. The future development directions and perspectives are prospected for providing an understanding of the related research activities on RMBs.  相似文献   

15.
This is the first report of successful potassium metal battery anode cycling with an aluminum-based rather than copper-based current collector. Dendrite-free plating/stripping is achieved through improved electrolyte wetting, employing an aluminum-powder-coated aluminum foil “Al@Al,” without any modification of the support surface chemistry or electrolyte additives. The reservoir-free Al@Al half-cell is stable at 1000 cycles (1950 h) at 0.5 mA cm−2, with 98.9% cycling Coulombic efficiency and 0.085 V overpotential. The pre-potassiated cell is stable through a wide current range, including 130 cycles (2600 min) at 3.0 mA cm−2, with 0.178 V overpotential. Al@Al is fully wetted by a 4 m potassium bis(fluorosulfonyl)imide-dimethoxyethane electrolyte (θCA  = 0 ° ), producing a uniform solid electrolyte interphase (SEI) during the initial galvanostatic formation cycles. On planar aluminum foil with a nearly identical surface oxide, the electrolyte wets poorly (θCA  = 52 ° ). This correlates with coarse irregular SEI clumps at formation, 3D potassium islands with further SEI coarsening during plating/stripping, possibly dead potassium metal on stripped surfaces, and rapid failure. The electrochemical stability of Al@Al versus planar Al is not related to differences in potassiophilicity (nearly identical) as obtained from thermal wetting experiments. Planar Cu foils are also poorly electrolyte-wetted and become dendritic. The key fundamental takeaway is that the incomplete electrolyte wetting of collectors results in early onset of SEI instability and dendrites.  相似文献   

16.
17.
Despite the imminent commercial introduction of Li‐ion batteries in electric drive vehicles and their proposed use as enablers of smart grids based on renewable energy technologies, an intensive quest for new electrode materials that bring about improvements in energy density, cycle life, cost, and safety is still underway. This Progress Report highlights the recent developments and the future prospects of the use of phases that react through conversion reactions as both positive and negative electrode materials in Li‐ion batteries. By moving beyond classical intercalation reactions, a variety of low cost compounds with gravimetric specific capacities that are two‐to‐five times larger than those attained with currently used materials, such as graphite and LiCoO2, can be achieved. Nonetheless, several factors currently handicap the applicability of electrode materials entailing conversion reactions. These factors, together with the scientific breakthroughs that are necessary to fully assess the practicality of this concept, are reviewed in this report.  相似文献   

18.
Electrodeposition induces material syntheses on conductive surfaces, distinguishing it from the widely used solid-state technologies in Li-based batteries. Electrodeposition drives uphill reactions by applying electric energy instead of heating. These features may enable electrodeposition to meet some needs for battery fabrication that conventional technologies can rarely achieve. The latest progress of electrodeposition technologies in Li-based batteries is summarized. Each component of Li-based batteries can be electrodeposited or synthesized with multiple methods. The advantages of electrodeposition are the main focus, and they are discussed in comparison with traditional technologies with the expectation to inspire innovations to build better Li-based batteries. Electrodeposition coats conformal films on surfaces and can control the film thickness, providing an effective approach to enhancing battery performance. Engineering interfaces by electrodeposition can stabilize the solid electrolyte interphase (SEI) and strengthen the adhesion of active materials to substrates, thereby prolonging the battery longevity. Lastly, a perspective of future studies on electrodepositing batteries is provided. The significant merits of electrodeposition should greatly advance the development of Li-based batteries.  相似文献   

19.
锂离子电池硅基负极材料研究进展   总被引:1,自引:0,他引:1  
硅基负极材料具有比容量大的优点,是高容量锂离子电池理想的负极材料。然而硅基材料在循环过程中容量衰减快,影响了其实用性。从硅复合物粉末和硅薄膜两个重要研究方面对硅基负极材料进行了综述,指出在Si基复合负极材料的研究中,单一途径改性提升循环性能的幅度有限,很难达到实用化阶段。硅的纳米化、无定形化、合金化及复合化等方法的综合运用成为硅基材料研究的主导方向。  相似文献   

20.
锂离子电池正极负极材料研究进展   总被引:9,自引:1,他引:9  
尹大川  王猛 《功能材料》1999,30(6):591-594
近年来,锂离子电池因其优异的特性,发展十分迅速。锂离子电池的优异性能与电池的材料选择,材料的制备工艺等密切相关,可以说,锂离子电池的性能,很大程度上取决于电池的正负极材料以及电解质和隔膜材料的选择和制备。基于这种的重要性,本文对目送2锂离子电池的正极和负极材料的研究进展进行了综合评述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号