首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an increasing demand for the development of a simple Si‐based universal memory device at the nanoscale that operates at high frequencies. Spin‐electronics (spintronics) can, in principle, increase the efficiency of devices and allow them to operate at high frequencies. A primary challenge for reducing the dimensions of spintronic devices is the requirement for high spin currents. To overcome this problem, a new approach is presented that uses helical chiral molecules exhibiting spin‐selective electron transport, which is called the chiral‐induced spin selectivity (CISS) effect. Using the CISS effect, the active memory device is miniaturized for the first time from the micrometer scale to 30 nm in size, and this device presents memristor‐like nonlinear logic operation at low voltages under ambient conditions and room temperature. A single nanoparticle, along with Au contacts and chiral molecules, is sufficient to function as a memory device. A single ferromagnetic nanoplatelet is used as a fixed hard magnet combined with Au contacts in which the gold contacts act as soft magnets due to the adsorbed chiral molecules.  相似文献   

2.
Chiral molecules have recently received renewed interest as highly efficient sources of spin-selective charge emission known as chiral-induced spin selectivity (CISS), which potentially offers a fascinating utilization of organic chiral materials in novel solid-state spintronic devices. However, a practical use of CISS remains far from completion, and rather fundamental obstacles such as (i) external controllability of spin, (ii) function durability, and (iii) improvement of spin-polarization efficiency have not been surmounted to date. In this study, these issues are addressed by developing a self-assembled monolayer (SAM) of overcrowded alkene (OCA)-based molecular motor. With this system, it is successfully demonstrated that the direction of spin polarization can be externally and repeatedly manipulated in an extremely stable manner by switching the molecular chirality, which is achieved by a formation of the covalent bonds between the molecules and electrode. In addition, it is found that a higher stereo-ordering architecture of the SAM of OCAs tailored by mixing them with simple alkanethiols considerably enhances the efficiency of spin polarization per a single OCA molecule. All these findings provide the creditable feasibility study for strongly boosting development of CISS-based spintronic devices that can simultaneously fulfill the controllability, durability, and high spin-polarization efficiency.  相似文献   

3.
Different scales of chirality endow a material with many excellent properties and potential applications. In this review, using π‐conjugated molecules as functional building blocks, recent progress on supramolecular helices inspired by biological helicity is summarized. First, induced chirality on conjugated polymers and small molecules is introduced. Molecular chirality can be amplified to nanostructures, superstructures, and even macroscopic structures by a self‐assembly process. Then, the principles for tuning the helicity of supramolecular chirality, as well as formation of helical heterojunctions, are summarized. Finally, the potential applications of chiral structures in chiral sensing and organic electronic devices are critically reviewed. Due to recent progress in chiral structures, an interdisciplinary area called “chiral electronics” is expected to gain wide popularity in the near future.  相似文献   

4.
Although a linear relationship between the optical activity (normally the CD signal) and the enantiomeric excess (ee) of chiral auxiliaries has been the most commonly observed dependence in dynamic supramolecular helical aggregates, positive nonlinear CD–ee dependence, known as the “majority-rules effect” (MRE), indicative of chiral amplification, has also been well documented and to some extent understood. In sharp contrast, the negative nonlinear CD–ee dependence has been much less reported and is not well understood. Here, the state of the art of both the positive and negative nonlinear CD–ee dependence in noncovalently bound supramolecular helical aggregates is summarized, with the hope that the vast examples of supramolecular aggregates showing positive nonlinear dependence, in terms of the methods of investigations, variations in the structure of the building block (single species or multiple species), and theoretical modeling using the mismatch penalty energy and helix reversal penalty energy, would help to guide the design of building blocks to form aggregates showing negative nonlinear dependence, and thus to understand the mechanisms. The potential applications of those functional supramolecular aggregates are also discussed.  相似文献   

5.
Since the first observation of the spin‐valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin‐polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin‐flip mechanisms in organic semiconductors and the role of hybrid metal–organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin‐transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal–organic interface by interface engineering can greatly impact the efficiency of spin‐polarized carrier injection. Here, progress on efficient spin‐polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self‐assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single‐crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin‐polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies.  相似文献   

6.
Fabrication and spintronics properties of 2D–0D heterostructures are reported. Devices based on graphene (“Gr”)–aluminium nanoclusters heterostructures show robust and reproducible single‐electron transport features, in addition to spin‐dependent functionality when using a top magnetic electrode. The magnetic orientation of this single ferromagnetic electrode enables the modulation of the environmental charge experienced by the aluminium nanoclusters. This anisotropic magneto‐Coulomb effect, originating from spin–orbit coupling within the ferromagnetic electrode, provides tunable spin valve‐like magnetoresistance signatures without the requirement of spin coherent charge tunneling. These results extend the capability of Gr to act both as electrode and as a platform for the growth of 2D–0D mixed‐dimensional van der Waals heterostructures, providing magnetic functionalities in the Coulomb blockade regime on scalable spintronic devices. These heterostructures pave the way towards novel device architectures at the crossroads of 2D material physics and spin electronics.  相似文献   

7.
It is shown that “spontaneous magnetization” occurs when chiral oligopeptides are attached to ferrocene and are self‐assembled on a gold substrate. As a result, the electron transfer, measured by electrochemistry, shows asymmetry in the reduction and oxidation rate constants; this asymmetry is reversed between the two enantiomers. The results can be explained by the chiral induced spin selectivity of the electron transfer. The measured magnetization shows high anisotropy and the “easy axis” of magnetization is along the molecular axis.  相似文献   

8.
Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc(2) single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.  相似文献   

9.
The hybrid organic–inorganic perovskites (HOIPs) form a new class of semiconductors which show promising optoelectronic device applications. Remarkably, the optoelectronic properties of HOIP are tunable by changing the chemical components of their building blocks. Recently, the HOIP spintronic properties and their applications in spintronic devices have attracted substantial interest. Here the impact of the chemical component diversity in HOIPs on their spintronic properties is studied. Spin valve devices based on HOIPs with different organic cations and halogen atoms are fabricated. The spin diffusion length is obtained in the various HOIPs by measuring the giant magnetoresistance (GMR) response in spin valve devices with different perovskite interlayer thicknesses. In addition spin lifetime is also measured from the Hanle response. It is found that the spintronic properties of HOIPs are mainly determined by the halogen atoms, rather than the organic cations. The study provides a clear avenue for engineering spintronic devices based on HOIPs.  相似文献   

10.
Bottom‐up multicomponent molecular self‐assembly is an efficient approach to fabricate and manipulate chiral nanostructures and their chiroptical activities such as the Cotton effect and circular polarized luminescence (CPL). However, the integrated coassembly suffers from spontaneous and inherent systematic pathway complexity with low yield and poor fidelity. Consequently, a rational design of chiral self‐assembled systems with more than two components remains a significant challenge. Herein, a modularized, ternary molecular self‐assembly strategy that generates chiroptically active materials at diverse hierarchical levels is reported. N‐terminated aromatic amino acids appended with binding sites for charge transfer and multiple hydrogen bonds undergo the evolution of supramolecular chirality with unique handedness and luminescent color, generating abundant CPL emission with high luminescence dissymmetry factor values in precisely controlled modalities. Ternary coassembly facilitates high‐water‐content hydrogel formation constituted by super‐helical nanostructures, demonstrating a helix to toroid topological transition. This discovery would shed light on developing complicated multicomponent systems in mimicking biological coassembly events.  相似文献   

11.
Chirality plays an important role in biological and material sciences. By introducing chiral elements into functional materials, new properties are created and an increase in information density can be achieved. Chiral properties of functional materials do not only rely on molecular structure, but also on supramolecular interaction between the building blocks. In contrast to the generally accepted opinion that chiral systems should include chiral molecules, this Research News introduces the role of achiral molecules in realizing chiral properties in films and gel‐like materials. Even a system that is entirely composed of achiral molecules can exhibit interesting chiroptical properties in supramolecular ultrathin films. This article demonstrates how achiral molecules can be assembled into supramolecular chiral films and organogels. It further shows how the incorporated achiral molecules can be used to switch the chiral properties of these supramolecular films and organogels.  相似文献   

12.
Magnetic skyrmions are topologically nontrivial chiral spin textures that have potential applications in next-generation energy-efficient and high-density spintronic devices. In general, the chiral spins of skyrmions are stabilized by the noncollinear Dzyaloshinskii–Moriya interaction (DMI), originating from the inversion symmetry breaking combined with the strong spin–orbit coupling (SOC). Here, the strong SOC from topological insulators (TIs) is utilized to provide a large interfacial DMI in TI/ferrimagnet heterostructures at room temperature, resulting in small-size (radius ≈ 100 nm) skyrmions in the adjacent ferrimagnet. Antiferromagnetically coupled skyrmion sublattices are observed in the ferrimagnet by element-resolved scanning transmission X-ray microscopy, showing the potential of a vanishing skyrmion Hall effect and ultrafast skyrmion dynamics. The line-scan spin profile of the single skyrmion shows a Néel-type domain wall structure and a 120 nm size of the 180° domain wall. This work demonstrates the sizable DMI and small skyrmions in TI-based heterostructures with great promise for low-energy spintronic devices.  相似文献   

13.
Exploration of molecular functions and material properties based on the control of chirality would be a scientifically elegant approach. Here, the fabrication and function of chiral-featured materials from both chiral and achiral components using a supramolecular nanoarchitectonics concept are discussed. The contents are classified in to three topics: i) chiral nanoarchitectonics of rather general molecular assemblies; ii) chiral nanoarchitectonics of metal–organic frameworks (MOFs); iii) chiral nanoarchitectonics in liquid crystals. MOF structures are based on nanoscopically well-defined coordinations, while mesoscopic orientations of liquid-crystalline phases are often flexibly altered. Discussion on the effects and features in these representative materials systems with totally different natures reveals the universal importance of supramolecular chiral nanoarchitectonics. Amplification of chiral molecular information from molecules to materials-level structures and the creation of chirality from achiral components upon temporal statistic fluctuations are universal, regardless of the nature of the assemblies. These features are thus surely advantageous characteristics for a wide range of applications.  相似文献   

14.
The host–guest chemistry of metal–organic frameworks (MOFs) has enabled the derivation of numerous new functionalities. However, intrinsically chiral MOFs (CMOFs) with helical channels have not been used to realize crystalline circularly polarized luminescence (CPL) materials. Herein, enantiomeric pairs of MOF crystals are reported, where achiral fluorophores adhere to the inner surface of helical channels via biology-like H-bonds and hence inherit the helicity of the host MOFs, eventually amplifying the luminescence dissymmetry factor (glum) of the host l /d -CMOF (±1.50 × 10−3) to a maximum of ±0.0115 for the composite l /d -CMOF⊃fluorophores. l /d -CMOF⊃fluorophores in pairs generate bright color-tunable CPL and almost ideal white CPL (0.33, 0.32) with a record-high photoluminescence quantum yield of ≈30%, which are further assembled into a white circularly polarized light-emitting diode. The present strategy opens a new avenue for propagating the chirality of MOFs to realize universal chiroptical materials.  相似文献   

15.
A closed‐loop “smart” insulin delivery system with the capability to mimic pancreatic cells will be highly desirable for diabetes treatment. This study reports a multiple stimuli‐responsive insulin delivery platform based on an explicit supramolecular strategy. Self‐assembled from a well‐designed amphiphilic host–guest complex formed by pillar[5]arene and a diphenylboronic acid derivative and loaded with insulin and glucose oxidase, the obtained insulin‐GOx‐loaded supramolecular vesicles can selectively recognize glucose, accompanied by the structure disruption and efficient release of the entrapped insulin triggered by the high glucose concentration as well as the in situ generated H2O2 and acid microenvironment during the GOx‐promoted specific oxidation of glucose into gluconic acid. Moreover, such a “smart” supramolecular theranostic nanoplatform is able to function as both a glucose sensor and a controlled insulin delivery actuator. In vivo experiments further demonstrate that this smart supramolecular nanocarrier shows fast response to hyperglycemic circumstances and can effectively regulate the glucose levels in a mouse model of type I diabetes.  相似文献   

16.
Circularly polarized light emission promotes the development of smart photonic materials for advanced applications in chiral sensing and information storage. The orbital angular momentum is a unique property for organic chiral helical materials. In this work, a type of organic chiral polymeric nanowires is designed with strong chirality induced orbital angular momentum. Under the stimulus of an external magnetic field of 600 mT, circularly polarized emission from the chiral polymeric nanowire becomes more pronounced, where the g factor increases from 0.21 to 0.3. The observed phenomena mainly originate from the chirality‐dependent orbital angular momentum. Moreover, the orbital angular momentum in helical chiral nanowire structures can be suppressed by inhibiting electron transport in a helical way to diminish circularly polarized light emission at room temperature.  相似文献   

17.
Self‐assembly of chiral nanostructures is of considerable interest, since the ability to control the chirality of these structures has direct ramifications in biology and materials science. A new approach to design chiral nanostructures from self‐assembly of N‐(9‐fluorenylmethoxycarbonyl)‐protected phenylalanine‐tryptophan‐lysine tripeptides is reported. The terminal charges can induce helical twisting of the assembled β‐sheets, enabling the formation of well‐defined chiral nanostructures. The degree and direction of twisting in the β‐sheets can be precisely tailored through in situ pH and temperature modulations. This enables the assembly of reconfigurable chiral nanomaterials with easily adjustable size and handedness. These results offer new insight into the mechanism of helical twist formation, which may enable the precise assembly of highly dynamical materials with potential applications in biomedicine, chiroptics, and chiral sensing.  相似文献   

18.
In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach for achieving ultralow power spintronic devices via suppressing Joule heating. Here, cutting-edge research, including electric-field modulation of antiferromagnetic spintronic devices using strain, ionic liquids, dielectric materials, and electrochemical ionic migration, is comprehensively reviewed. Various emergent topics such as the Néel spin–orbit torque, chiral spintronics, topological antiferromagnetic spintronics, anisotropic magnetoresistance, memory devices, 2D magnetism, and magneto-ionic modulation with respect to antiferromagnets are examined. In conclusion, the possibility of realizing high-quality room-temperature antiferromagnetic tunnel junctions, antiferromagnetic spin logic devices, and artificial antiferromagnetic neurons is highlighted. It is expected that this work provides an appropriate and forward-looking perspective that will promote the rapid development of this field.  相似文献   

19.
Chiral supramolecular nanostructures with optoelectronic functions are expected to play a central role in many scientific and technological fields but their practical use remains in its infancy. Here, this paper reports photoconductive chiral organic semiconductors (OSCs) based on perylene diimides with the highest electron mobility among the chiral OSCs and investigates the structure and optoelectronic properties of their homochiral and heterochiral supramolecular assemblies from bottom‐up self‐assembly. Owing to the well‐ordered supramolecular packing, the homochiral nanomaterials exhibit superior charge transport with significantly higher photoresponsivity and dissymmetry factor compared with those of their thin film and monomeric equivalents, which enables highly selective detection of circularly polarized light, for the first time, in visible spectral range. Interestingly, the heterochiral nanostructures assembled from co‐self‐assembly of racemic mixtures show extraordinary chiral self‐discrimination phenomenon, where opposite enantiomeric molecules are packed alternately into heterochiral architectures, leading to completely different optoelectrical performances. In addition, the crystal structures of homochiral and heterochiral nanostructures have first been studied by ab initio X‐ray powder diffraction analysis. These findings give insights into the structure–chiroptical property relationships of chiral supramolecular self‐assemblies and demonstrate the feasibility of supramolecular chirality for high‐performance chiroptical sensing.  相似文献   

20.
Hybrid organic–inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge‐carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin–orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high‐performance optoelectronics and spintronics. Here, 3D hybrid organic–inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号