首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficacy of therapeutics for brain tumors is seriously hampered by multiple barriers to drug delivery, including severe destabilizing effects in the blood circulation, the blood–brain barrier/blood–brain tumor barrier (BBB/BBTB), and limited tumor uptake. Here, a sequential targeting in crosslinking (STICK) nanodelivery strategy is presented to circumvent these important physiological barriers to improve drug delivery to brain tumors. STICK nanoparticles (STICK-NPs) can sequentially target BBB/BBTB and brain tumor cells with surface maltobionic acid (MA) and 4-carboxyphenylboronic acid (CBA), respectively, and simultaneously enhance nanoparticle stability with pH-responsive crosslinkages formed by MA and CBA in situ. STICK-NPs exhibit prolonged circulation time (17-fold higher area under curve) than the free agent, allowing increased opportunities to transpass the BBB/BBTB via glucose-transporter-mediated transcytosis by MA. The tumor acidic environment then triggers the transformation of the STICK-NPs into smaller nanoparticles and reveals a secondary CBA targeting moiety for deep tumor penetration and enhanced uptake in tumor cells. STICK-NPs significantly inhibit tumor growth and prolong the survival time with limited toxicity in mice with aggressive and chemoresistant diffuse intrinsic pontine glioma. This formulation tackles multiple physiological barriers on-demand with a simple and smart STICK design. Therefore, these features allow STICK-NPs to unleash the potential of brain tumor therapeutics to improve their treatment efficacy.  相似文献   

2.
In this study, a fucoidan-based theranostic nanogel(CFN-gel) consisting of a fucoidan backbone, redox-responsive cleavable linker and photosensitizer is developed to achieve acti-vatable near-infrared fluorescence imaging of tumor sites and an enhanced photodynamic therapy(PDT) to induce the com-plete death of cancer cells. A CFN-gel has nanomolar a nity for P-selectin, which is overexpressed on the surface of tumor neovascular endothelial cells as well as many other cancer cells. Therefore, a CFN-gel can enhance tumor accumulation through P-selectin targeting and the enhanced permeation and retention e ect. Moreover, a CFN-gel is non-fluorescent and non-phototoxic upon its systemic administration due to the aggregation-induced self-quenching in its fluorescence and singlet oxygen generation. After internalization into cancer cells and tumor neovascular endothelial cells, its photoactivity is recovered in response to the intracellular redox potential, thereby enabling selective near-infrared fluorescence imaging and an enhanced PDT of tumors. Since a CFN-gel also shows nanomolar a nity for the vascular endothelial growth factor, it also provides a significant anti-tumor e ect in the absence of light treatment in vivo. Our study indicates that a fucoidan-based theranostic nanogel is a new theranostic material for imaging and treating cancer with high e cacy and specificity.  相似文献   

3.
The absence of targeted, single treatment methods produces low therapeutic value for treating cancers. To increase the accumulation of drugs in tumors and improve the treatment effectiveness, near‐infrared 808 nm photothermal responsive dual aptamers‐targeted docetaxel (DTX)‐containing nanoparticles is proposed. In this system, DTX and NH4HCO3 are loaded in thermosensitive liposomes. The surface of liposomes is coated with gold nanoshells and connected with sulfydryl (SH? ) modified AS1411 and S2.2 aptamers. The nanosystem has good biocompatibility and uniform size (diameter about 200 nm). The drug is rapidly released, reaching a maximum amount (84%) at 4 h under 808 nm laser irradiation. The experiments conducted in vitro and in vivo demonstrate the nanosystem can synergistically inhibit tumor growth by combination of chemotherapy, photothermal therapy, and biological therapy. Dual ligand functionalization significantly increases cellular uptake on breast cancer cell line (MCF‐7) cells and achieves ultrasound imaging (USI) at tumor site. The results indicate that this drug delivery system is a promising theranostic agent involving light‐thermal response at tumor sites, dual ligand targeted triplex therapy, and USI.  相似文献   

4.
The development of theranostic systems capable of diagnosis, therapy, and target specificity is considerably significant for accomplishing personalized medicine. Here, a multifunctional rattle‐type nanoparticle (MRTN) as an effective biological bimodal imaging and tumor‐targeting delivery system is fabricated, and an enhanced loading ability of hydrophobic anticancer drug (paclitaxel) is also realized. The rattle structure with hydrophobic Fe3O4 as the inner core and mesoporous silica as the shell is obtained by one‐step templates removal process, and the size of interstitial hollow space can be easily adjusted. The Fe3O4 core with hydrophobic poly(tert‐butyl acrylate) (PTBA) chains on the surface is not only used as a magnetic resonance imaging (MRI) agent, but contributes to improving hydrophobic drug loading amount. Transferrin (Tf) and a near‐infrared fluorescent dye (Cy 7) are successfully modified on the surface of the nanorattle to increase the ability of near‐infrared fluorescence (NIRF) imaging and tumor‐targeting specificity. In vivo studies show the selective accumulation of MRTN in tumor tissues by Tf‐receptor‐mediated endocytosis. More importantly, paclitaxel‐loaded MRTN shows sustained release character and higher cytotoxicity than the free paclitaxel. This theranostic nanoparticle as an effective MRI/NIRF bimodal imaging probe and drug delivery system shows great potential in cancer diagnosis and therapy.  相似文献   

5.
Red blood cell (RBC) membrane‐cloaked nanoparticles, reserving the intact cell membrane structure and membrane protein, can gain excellent cell‐specific functions such as long blood circulation and immune escape, providing a promising therapy nanoplatform for drug delivery. Herein, a novel RBC membrane biomimetic combination therapeutic system with tumor targeting ability is constructed by embedding bovine serum albumin (BSA) encapsulated with 1,2‐diaminocyclohexane‐platinum (II) (DACHPt) and indocyanine green (ICG) in the targeting peptide‐modified erythrocyte membrane (R‐RBC@BPtI) for enhancing tumor internalization and synergetic chemophototherapy. R‐RBC@BPtI displays excellent stability and high encapsulation efficiency with multiple cores enveloped in the membrane. Benefited from the stealth functionality and targeting modification of erythrocyte membranes, R‐RBC@BPtI can significantly promote tumor targeting and cellular uptake. Under the near‐infrared laser stimuli, R‐RBC@BPtI presents remarkable instability by singlet oxygen and heat‐mediated cleavage so as to trigger effective drug release, thereby achieving deep penetration and accumulation of DACHPt and ROS in the tumor site. Consequently, R‐RBC@BPtI with tumor‐specific targeting ability accomplishes remarkable ablation of tumors and suppressed lung metastasis in vivo by photothermal and chemotherapy combined ablation under phototriggering. This research provides a novel strategy of targeted biomimetic nanoplatforms for combined cancer chemotherapy–phototherapy.  相似文献   

6.
Improving tumor accumulation and delivery efficiency is an important goal of nanomedicine. Neutrophils play a vital role in both chemically mediating inflammatory response through myeloperoxidase (MPO) and biologically promoting metastasis during inflammation triggered by the primary tumor or environmental stimuli. Herein, a novel theranostic nanomedicine that targets both the chemical and biological functions of neutrophils in tumor is designed, facilitating the enhanced retention and sustained release of drug cargos for improved cancer theranostics. 5-hydroxytryptamine (5-HT) is equipped onto nanoparticles (NPs) loaded with photosensitizers and Zileuton (a leukotriene inhibitor) to obtain MPO and neutrophil targeting NPs, denoted as HZ-5 NPs. The MPO targeting property of 5-HT modified NPs is confirmed by noninvasive positron emission tomography imaging studies. Furthermore, photodynamic therapy is used to initiate the inflammatory response which further mediated the accumulation and retention of neutrophil targeting NPs in a breast cancer model. This design renders a greatly improved theranostic nanomedicine for efficient tumor suppression, and more importantly, inhibition of neutrophil-mediated lung metastasis via the sustained release of Zileuton. This work presents a novel strategy of targeting neutrophils for improved tumor theranostics, which may open up new avenues in designing nanomedicine through exploiting the tumor microenvironment.  相似文献   

7.
The abilities to deliver siRNA to its intended action site and assess the delivery efficiency are challenges for current RNAi therapy, where effective siRNA delivery will join force with patient genetic profiling to achieve optimal treatment outcome. Imaging could become a critical enabler to maximize RNAi efficacy in the context of tracking siRNA delivery, rational dosimetry and treatment planning. Several imaging modalities have been used to visualize nanoparticle‐based siRNA delivery but rarely did they guide treatment planning. We report a multimodal theranostic lipid‐nanoparticle, HPPS(NIR)‐chol‐siRNA, which has a near‐infrared (NIR) fluorescent core, enveloped by phospholipid monolayer, intercalated with siRNA payloads, and constrained by apoA‐I mimetic peptides to give ultra‐small particle size (<30 nm). Using fluorescence imaging, we demonstrated its cytosolic delivery capability for both NIR‐core and dye‐labeled siRNAs and its structural integrity in mice through intravenous administration, validating the usefulness of NIR‐core as imaging surrogate for non‐labeled therapeutic siRNAs. Next, we validated the targeting specificity of HPPS(NIR)‐chol‐siRNA to orthotopic tumor using sequential four‐steps (in vivo, in situ, ex vivo and frozen‐tissue) fluorescence imaging. The image co‐registration of computed tomography and fluorescence molecular tomography enabled non‐invasive assessment and treatment planning of siRNA delivery into the orthotopic tumor, achieving efficacious RNAi therapy.  相似文献   

8.
Combining photothermal therapy (PTT) with clinical technology to kill cancer via overcoming the low tumor targeting and poor therapy efficiency has great potential in basic and clinical researches. A brand‐new MoS2 nanostructure is designed and fabricated, i.e., layered MoS2 hollow spheres (LMHSs) with strong absorption in near‐infrared region (NIR) and high photothermal conversion efficiency via a simple and fast chemical aerosol flow method. Owing to curving layered hollow spherical structure, the as‐prepared LMHSs exhibit unique electronic properties comparing with MoS2 nanosheets. In vitro and in vivo studies demonstrate their high photothermal ablation of cell and tumor elimination rate by single NIR light irradiation. Systematic acute toxicity study indicates that these LMHSs have negligible toxic effects to normal tissues and blood. Remarkably, minimally invasive interventional techniques are introduced to improve tumor targeting of PTT agents for the first time. To explore PTT efficiency on orthotopic transplantation tumors, New Zealand white rabbits with VX2 tumor in liver are used as animal models. The effective elimination of tumors is successfully realized by PTT under the guidance of digital subtraction angiography, computed tomography, and thermal imaging, which provides a new way for tumor‐targeting delivery and cancer theranostic application.  相似文献   

9.
Photosensitizers (PSs) play a key role in the photodynamic therapy (PDT) of tumors. However, commonly used PSs are prone to intrinsic fluorescence aggregation-caused quenching and photobleaching; this drawback severely limits the clinical application of PDT, necessitating new phototheranostic agents. Herein, a multifunctional theranostic nanoplatform (named TTCBTA NP) is designed and constructed to achieve fluorescence monitoring, lysosome-specific targeting, and image-guided PDT. TTCBTA with a twisted conformation and D-A structure is encapsulated in amphiphilic Pluronic F127 to form nanoparticles (NPs) in ultrapure water. The NPs exhibit biocompatibility, high stability, strong near-infrared emission, and desirable reactive oxygen species (ROSs) production capacity. The TTCBTA NPs also show high-efficiency photo-damage, negligible dark toxicity, excellent fluorescent tracing, and high accumulation in lysosome for tumor cells. Furthermore, TTCBTA NPs are used to obtain fluorescence images with good resolution of MCF-7 tumors in xenografted BALB/c nude mice. Crucially, TTCBTA NPs present a strong tumor ablation ability and image-guided PDT effect by generating abundant ROSs upon laser irradiation. These results demonstrate that the TTCBTA NP theranostic nanoplatform may enable highly efficient near-infrared fluorescence image-guided PDT.  相似文献   

10.
Nanomedicines can be taken up by cells via nonspecific and dynamin‐dependent (energy‐dependent) clathrin and caveolae‐mediated endocytosis. While significant effort has focused on targeting pathway‐specific transporters, the role of nanobiophysics in the cell lipid bilayer nanoparticle uptake pathway remains largely unexplored. In this study, it is demonstrated that stiffness of lipid bilayer is a key determinant of uptake of liposomes by mammalian cells. Dynamin‐mediated endocytosis (DME) of liposomes is found to correlate with its phase behavior, with transition toward solid phase promoting DME, and transition toward fluidic phase resulting in dynamin‐independent endocytosis. Since liposomes can transfer lipids to cell membrane, it is sought to engineer the biophysical properties of the membrane of breast epithelial tumor cells (MD‐MBA‐231) by treatment with phosphatidylcholine liposomes, and elucidate its effect on the uptake of polymeric nanoparticles. Analysis of the giant plasma membrane vesicles derived from treated cells using flicker spectroscopy reveals that liposome treatment alters membrane stiffness and DME of nanoparticles. Since liposomes have a history of use in drug delivery, localized priming of tumors with liposomes may present a hitherto unexploited means of targeting tumors based on biophysical interactions.  相似文献   

11.
Although tremendous efforts have been made on targeted drug delivery systems, current therapy outcomes still suffer from low circulating time and limited targeting efficiency. The integration of cell‐mediated drug delivery and theranostic nanomedicine can potentially improve cancer management in both therapeutic and diagnostic applications. By taking advantage of innate immune cell's ability to target tumor cells, the authors develop a novel drug delivery system by using macrophages as both nanoparticle (NP) carriers and navigators to achieve cancer‐specific drug delivery. Theranostic NPs are fabricated from a unique polymer, biodegradable photoluminescent poly (lactic acid) (BPLP‐PLA), which possesses strong fluorescence, biodegradability, and cytocompatibility. In order to minimize the toxicity of cancer drugs to immune cells and other healthy cells, an anti‐BRAF V600E mutant melanoma specific drug (PLX4032) is loaded into BPLP‐PLA nanoparticles. Muramyl tripeptide is also conjugated onto the nanoparticles to improve the nanoparticle loading efficiency. The resulting nanoparticles are internalized within macrophages, which are tracked via the intrinsic fluorescence of BPLP‐PLA. Macrophages carrying nanoparticles deliver drugs to melanoma cells via cell–cell binding. Pharmacological studies also indicate that the PLX4032 loaded nanoparticles effectively kill melanoma cells. The “self‐powered” immune cell‐mediated drug delivery system demonstrates a potentially significant advancement in targeted theranostic cancer nanotechnologies.  相似文献   

12.
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.  相似文献   

13.
Upconversion nanocrystals (UCNs) display near‐infrared (NIR)‐responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell‐based theranostic system designed by UCN integration with a folate (FA)‐conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB‐Dox) and a multivalent FA‐conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB‐Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10−9m ) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB‐Dox)(G5FA) by FAR‐positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB‐Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN‐dendrimer nanocomposites for cell type specific NIR imaging and light‐controlled drug release, thus serving as a new theranostic system.  相似文献   

14.
Aptamers are composed of short RNA or single‐stranded DNA sequences that, when folded into their unique 3D conformation, can bind to their targets with high specificity and affinity. Although functionally similar to protein antibodies, oligonucleotide aptamers offer several advantages over protein antibodies in biomedical and clinical applications. Through the enhanced permeability and retention effect, nanomedicines can improve the therapeutic index of a treatment and reduce side effects by enhancing accumulation at the disease site. However, this targets tumors passively and, thus, may not be ideal for targeted therapy. To construct ligand‐directed “active targeting” nanobased delivery systems, aptamer‐equipped nanomedicines have been tested for in vitro diagnosis, in vivo imaging, targeted cancer therapy, theranostic approaches, sub‐cellular molecule detection, food safety, and environmental monitoring. This review focuses on the development of aptamer‐conjugated nanomedicines and their application for in vivo imaging, targeted therapy, and theranostics.  相似文献   

15.
In vivo tumor targeting and drug delivery properties of small polymerized polydiacetylene (PDA) micelles (~10 nm) is investigated in a murine MDA-MB-231 xenograft model of breast cancer. Three micelles with different surface coatings are synthesized and tested for their ability to passively target tumor through the enhanced permeability and retention effect. After injection (24 h), fluorescence diffuse optical tomographic imaging indicates a tumor uptake of nearly 3% of the injected dose for the micelles with a 2 kDa poly(ethylene glycol) (PEG)-coating (PDA-PEG2000). The uptake of PDA micelles in tumors is confirmed by co-localization with [(18) F]-fluorodeoxyglucose (FDG) positron emission tomography. Although FDG has a higher diffusion rate in tumors, 40 ± 19% of the retained micelles is co-registered with the tumor volume visualized by FDG. Finally, PDA-PEG2000 micelles are loaded with the hydrophobic anticancer drug paclitaxel and used in vivo to inhibit tumor growth. These findings demonstrate the potential of PDA-PEG2000 micelles for both in vivo tumor imaging and drug delivery applications.  相似文献   

16.
Targeting of chemotherapeutics towards a tumor site by magnetic nanocarriers is considered promising in tumor-control. Magnetic nanoparticles are also considered for use in infection-control as a new means to prevent antimicrobial resistance from becoming the number one cause of death by the year 2050. To this end, magnetic nanoparticles can either be loaded with an antimicrobial for use as a delivery vehicle or modified to acquire intrinsic antimicrobial properties. Magnetic nanoparticles can also be used for the local generation of heat to kill infectious microorganisms. Although appealing for tumor-and infectioncontrol, injection in the blood circulation may yield reticuloendothelial uptake and physical obstruction in organs that yield reduced targeting efficiency. This can be prevented with suitable surface modification. However, precise techniques to direct magnetic nanoparticles towards a target site are lacking. The problem of precise targeting is aggravated in infection-control due to the micrometer-size of infectious biofilms, as opposed to targeting of nanoparticles towards centimeter-sized tumors. This review aims to identify possibilities and impossibilities of magnetic targeting of nanoparticles for infection-control. We first review targeting techniques and the spatial resolution they can achieve as well as surface-chemical modifications of magnetic nanoparticles to enhance their targeting efficiency and antimicrobial efficacy.It is concluded that targeting problems encountered in tumor-control using magnetic nanoparticles, are neglected in most studies on their potential application in infection-control. Currently biofilm targeting by smart, self-adaptive and pH-responsive, antimicrobial nanocarriers for instance, seems easier to achieve than magnetic targeting. This leads to the conclusion that magnetic targeting of nanoparticles for the control of micrometer-sized infectious biofilms may be less promising than initially expected.However, using propulsion rather than precise targeting of magnetic nanoparticles in a magnetic field to traverse through infectious-biofilms can create artificial channels for enhanced antibiotic transport.This is identified as a more feasible, innovative application of magnetic nanoparticles in infection-control than precise targeting and distribution of magnetic nanoparticles over the depth of a biofilm.  相似文献   

17.
Remote optical detection and imaging of specific tumor‐related biomarkers and simultaneous activation of therapy according to the expression level of the biomarkers in tumor site with theranostic probes should be an effective modality for treatment of cancers. Herein, an upconversion nanobeacon (UCNPs‐MB/Dox) is proposed as a new theranostic nanoprobe to ratiometrically detect and visualize the thymidine kinase 1 (TK1) mRNA that can simultaneously trigger the Dox release to activate the chemotherapy accordingly. UCNPs‐MB/Dox is constructed with the conjugation of a TK1 mRNA‐specific molecular beacon (MB) bearing a quencher (BHQ‐1) and an alkene handle modified upconversion nanoparticle (UCNP) through click reaction and subsequently loading with a chemotherapy drug (Dox). With this nanobeacon, quantitative ratiometric upconversion detection of the target with high sensitivity and selectivity as well as the target triggered Dox release in vitro is demonstrated. The sensitive and selective ratiometric detection and imaging of TK1 mRNA under the irradiation of near infrared light (980 nm) and the mRNA‐dependent release of Dox for chemotherapy in the tumor MCF‐7 cells and A549 cells are also shown. This work provides a smart and robust platform for gene‐related tumor theranostics.  相似文献   

18.
Lung cancer is the most common and most fatal cancer worldwide. Thus, improving early diagnosis and therapy is necessary. Previously, gadolinium‐based ultra‐small rigid platforms (USRPs) were developed to serve as multimodal imaging probes and as radiosensitizing agents. In addition, it was demonstrated that USRPs can be detected in the lungs using ultrashort echo‐time magnetic resonance imaging (UTE‐MRI) and fluorescence imaging after intrapulmonary administration in healthy animals. The goal of the present study is to evaluate their theranostic properties in mice with bioluminescent orthotopic lung cancer, after intrapulmonary nebulization or conventional intravenous administration. It is found that lung tumors can be detected non‐invasively using fluorescence tomography or UTE‐MRI after nebulization of USRPs, and this is confirmed by histological analysis of the lung sections. The deposition of USRPs around the tumor nodules is sufficient to generate a radiosensitizing effect when the mice are subjected to a single dose of 10 Gy conventional radiation one day after inhalation (mean survival time of 112 days versus 77 days for irradiated mice without USRPs treatment). No apparent systemic toxicity or induction of inflammation is observed. These results demonstrate the theranostic properties of USRPs for the multimodal detection of lung tumors and improved radiotherapy after nebulization.  相似文献   

19.
The conventional approach in cancer nanomedicine involves advanced drug nanocarriers delivering preloaded therapeutics to targeted tumor sites to maximize drug efficiency. However, both cancer drugs and nanocarriers inevitably produce side effects and systemic toxicity. Herein, hemoglobin nanocrystals (HbC) as drug-free theranostic nanoformulations with the tumor microenvironment (TME) activated diagnostic and therapeutic abilities towards colon tumors are introduced. HbC can release Fe2+ oxidized to Fe3+ in the Fenton reaction with tumor endogenous H2O2, concurrently with the generation of cytotoxic hydroxyl radicals (•OH) that allow for chemodynamic therapy (CDT). Furthermore, in situ-produced Fe3+ reacts with colon tumor-abundant H2S, resulting in the production of Fe1−xS, which provides magnetic resonance imaging (MRI) contrast and allows for NIR light-inducible photothermal therapy (PTT). In vitro and in vivo studies revealed that HbC produced CDT towards 4T1 tumors, and MRI-guided, synergistically enhanced combination of CDT and PTT against H2S abundant colon tumors (CT26), with negligible toxicity towards normal tissues, enlightening HbC as highly efficient and biocompatible TME activated theranostic nanoplatform specific against colon cancer without any traditional drugs and drug carriers.  相似文献   

20.
Targeting therapy of tumors in their early stages is crucial to increase the survival rate of cancer patients. Currently most drug‐delivery systems target the neoplasia through the tumor‐associated receptors overexpressed on the cancer cell membrane. However, the expression of these receptors on normal cells and tissues is inevitable, which leads to unwanted accumulation and side effects. Characteristics of the tumor microenvironment, such as acidosis, are pervasive in almost all solid tumors and can be easily accessed. It is shown that the different extracellular pH value can be used to activate/inactivate the receptor‐mediated endocytosis on tumor/normal cells. This idea is implemented by conjugating a shielding molecule at the terminus of a receptor‐specific ligand via a pH‐sensitive hydrazone bond. The acid‐activated detachment of the shielding molecule and enhanced tumor/background accumulation ratio are demonstrated. These results suggest that acid active receptor‐specific peptide ligand‐modified tumor‐targeting delivery systems have potential use in the treatment of tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号