首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorine dioxide gas at different concentrations (0.5, 1, 1.5, 3 and 5 mgl(-1)) for 10 min were studied. A cocktail of three strains of each targeted organism (100 microl) was spotted onto the surface of the strawberries (approximately 8-9 log ml(-1)) separately followed by air drying, and then treated with ClO(2) gas at 22 degrees C and 90-95% relative humidity. Approximately a 4.3-4.7 logCFU reduction per strawberry of all examined bacteria was achieved by treatment with 5 mgl(-1) ClO(2) for 10 min. The inactivation kinetics of E. coli O157:H7, L. monocytogenes and S. enterica were determined using first-order kinetic models to establish D-values and z-values. The D-values of E. coli, L. monocytogenes and S. enterica were 2.6+/-0.2, 2.3+/-0.2 and 2.7+/-0.7 min, respectively, at 5 mgl(-1) ClO(2). The z-values of E. coli, L. monocytogenes and S. enterica were 16.8+/-3.5, 15.8+/-3.5 and 23.3+/-3.3 mgl(-1), respectively. Furthermore, treatment with ClO(2) gas significantly (p < or = 0.05) reduced the initial microflora (mesophilic, psychrotrophic bacteria, yeasts and molds) on strawberries. Treatment with ClO(2) gas did not affect the color of strawberries and extended the shelf-life to 16 days compared to 8 days for the untreated control.  相似文献   

2.
MR Choi  Q Liu  SY Lee  JH Jin  S Ryu  DH Kang 《Food microbiology》2012,32(1):191-195
This research was initiated to assess the efficacy of gaseous ozone for inactivation Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in apple juice. Juice samples with solids content of 18, 36, and 72 °Brix inoculated with a culture cocktail of three foodborne pathogens were treated with gaseous ozone at a flow rate of 3.0 L/min and an ozone generation rate of 0.10, 0.90, 3.51, and 5.57 g/h for 0.5, 1, 5, and 10 min, respectively. The inactivation kinetics of gaseous ozone on foodborne pathogens conformed to the Weibull model. The time required to achieve a 5 log reduction (t5d) was estimated using the parameters of the Weibull model. The t5d increased with increasing solids content of apple juice. The ozone generation rate did not impart a significant effect (p > 0.05) on t5d. Gaseous ozone is effective at inactivating foodborne pathogens in apple juice but the efficacy is dependent on the solids content of the juice sample.  相似文献   

3.
ABSTRACT: Thermal inactivation of Escherichia coli O157:H7, Salmonella , and Listeria monocytogenes in ground pork was compared. The D (decimal reduction time at a certain heating temperature) values of E. coli O157:H7, Salmonella , and L. monocytogenes at 55 to 70°C were 33.44 to 0.048 min, 45.87 to 0.083 min, and 47.17 to 0.085 min, respectively. The z (temperature rise for 1 log10 reduction of D) value of E. coli O157:H7, Salmonella , and L. monocytogenes in ground pork was 4.94°C, 5.89°C, and 5.92°C, respectively. Significant difference was found on the D and z values between E. coli O157:H7 and Salmonella or between E. coli O157:H7 and L. monocytogenes . The D and z values of Salmonella in ground pork were not significantly different from L. monocytogenes .  相似文献   

4.
ABSTRACT: The country-cured ham process, including curing, equalization, cold-smoked or nonsmoked, and aging up to 6 mo, was validated and showed its effectiveness in achieving a 6-log reduction of Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7. The viable counts of L. monocytogenes populations decreased to below detection levels after 206 d, Salmonella populations required 122 d, and E. coli O157:H7 required 66 d. However, L. monocytogenes -inoculated hams were positive and Salmonella spp-inoculated and E. coli O157:H7-inoculated hams were negative following enrichment procedures at the end of the aging process. Therefore, the survival of L. monocytogenes on country-cured ham represents a risk.  相似文献   

5.
Carvacrol and eugenol were encapsulated in micellar nonionic surfactant solutions to increase active component concentrations in the aqueous phase and used to treat two strains of Listeria monocytogenes (Scott A and 101) and two strains of Escherichia coli O157:H7 (4388 and 43895) grown as biofilms in a Centers for Disease Control and Prevention reactor. L. monocytogenes biofilms were grown in two different growth media, 1:20 TSB and Modified Welshimer's broth (MWB), while E. coli O157:H7 was grown in M9. In general, L. monocytogenes strains were more resistant to both micelle-encapsulated antimicrobials than E. coli O157:H7 strains. The two antimicrobials were equally effective against both strains of E. coli O157:H7, decreasing viable counts by 3.5 to 4.8 log CFU/cm(2) within 20 min. For both bacteria, most of the bactericidal activity took place in the first 10 min of antimicrobial exposure. Biofilm morphology and viability were assessed by the BacLight RedoxSensor CTC Vitality kit and confocal scanning laser microscopy, revealing an increasing number of dead cells when biofilms were treated with sufficiently high concentrations of carvacrol- or eugenol-loaded micelles. This study demonstrates the effectiveness of the application of surfactant-encapsulated essential oil components on two pathogen biofilm formers such as E. coli O157:H7 and L. monocytogenes grown on stainless steel coupons.  相似文献   

6.
A survey of beef carcasses was conducted in all 10 European community approved abattoirs in Northern Ireland to determine the incidence of Escherichia coli O157:H7. Analyses were based on excised samples of neck meat taken less than 48 h post-kill. Overall, 780 carcasses were sampled and all were negative for E. coli O157:H7. A sub-set of samples was analysed for the presence of Listeria monocytogenes (n=200), Salmonella (n=200) and Campylobacter spp.(n=100). L. monocytogenes was not detected but Listeria innocua was found on five carcasses and Listeria seeligeri on one. Three carcasses carried salmonellas; Salmonella Mbandaka was found on two and Salmonella Thompson on one. Campylobacter spp. were not detected on any carcasses. The results indicate that very few beef carcasses in Northern Ireland appear to carry any of the four pathogens sought, and this may help explain the low incidence of E. coli O157:H7 in the Northern Ireland human population, relative to the rest of the UK.  相似文献   

7.
The objectives of this study were to examine inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Poona inoculated onto whole cantaloupe and treated with ClO(2) gas at different concentrations (0.5, 1.0, 1.5, 3.0 and 5.0 mg l(-1)) for different times (0, 2.0, 4.0, 6.0, 8.0 and 10.0 min). The effect of ClO(2) gas on the quality and shelf life of whole cantaloupe was also evaluated during storage at 22 degrees C for 12 days. A 100 microl inoculation of each targeted organism was spotted onto the surface (5 cm(2)) of cantaloupe rind (approximately 8-9 log CFU 5 cm(-2)) separately, air dried (60 min), and then treated with ClO(2) gas at 22 degrees C and 90-95% relative humidity for 10 min. Surviving bacterial populations on cantaloupe surfaces were determined using a membrane transferring method with a non-selective medium followed by a selective medium. The inactivation kinetics of E. coli O157:H7, L. monocytogenes and S. Poona were determined using nonlinear kinetics (Weibull model). A 3 log CFU reduction of E. coli O157:H7, L. monocytogenes and S. Poona were achieved with 5.0 mg l(-1) ClO(2) gas for 5.5, 4.2 and 1.5 min, respectively. A 5l og CFU reduction of S. Poona was achieved with 5.0 and 3.0 mg l(-1) ClO(2) gas for 6 and 8 min, respectively. A 4.6 and 4.3 log reduction was achieved after treatment with 5.0 mg l(-1) ClO(2) gas at 10 min for E. coli O157:H7 and L. monocytogenes, respectively. Treatment with 5.0 mg l(-1) ClO(2) gas significantly (p<0.05) reduced the initial microflora (mesophilic bacteria, psychrotrophic bacteria, and yeasts and molds) on cantaloupe by more than 2 log CFU cm(-2) and kept them significantly (p<0.05) lower than the untreated control during storage at 22 degrees C for 12 days. Treatment with ClO(2) gas did not significantly (p>0.05) affect the color of whole cantaloupe and extended the shelf life to 9 days compared to 3 days for the untreated control, when stored at ambient temperature (22 degrees C).  相似文献   

8.
The survival of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella was studied in apple, orange, pineapple, and white grape juice concentrates and banana puree. Pouches of juice concentrate or puree were inoculated with pathogens at a level > or = 10(3) CFU/g and stored at -23 degrees C (-10 degrees F). Pathogen survival was monitored at 6 and 24 h, once a week for four consecutive weeks, and biweekly thereafter until 12 weeks. When pathogens were not detectable by direct plating, samples were enriched in universal preenrichment broth for 72 h and plated on selective media. Results showed that E. coli O157:H7, L. monocytogenes, and Salmonella were recoverable from all five concentrates through 12 weeks of storage at -23 degrees C.  相似文献   

9.
This study reports the antibacterial effect of PR-26, a synthetic peptide derived from the first 26 amino acid sequence of PR-39, an antimicrobial peptide isolated from porcine neutrophils. A three-strain mixture of Escherichia coli O157:H7 or Listeria monocytogenes of approximately 10(8) CFU was inoculated to a final concentration of 10(7) CFU/ml in 1% peptone water (pH 7.0), containing 50 or 75 microg/ml of PR-26, and incubated at 37 degrees C for 0, 6, 12, and 24 h; at 24 degrees C for 0, 12, 24, and 36 h; or at 10 or 4 degrees C for 0, 24, 72, and 120 h. Control samples included 1% peptone water inoculated with each pathogen mixture but containing no PR-26. The surviving population of each pathogen at each sampling time was determined by plating on tryptic soy agar with incubation at 37 degrees C for 24 h. At 37 degrees C, PR-26 decreased E. coli O157:H7 and L. monocytogenes populations by >5.0 log CFU/ml at 12 h, with complete inactivation at 24 h. At 24 degrees C, PR-26 reduced E. coli O157:H7 and L. monocytogenes by approximately 3.5, 4.0, and 4.5 log CFU/ml at the end of 12-, 24-, and 36-h incubations, respectively. At 4 and 10 degrees C, the inhibitory effect of PR-26 on E. coli O157:H7 and L. monocytogenes was significantly lower (P < 0.05) than that at 37 and 24 degrees C: a 2- to 3-log CFU/ml reduction was observed at 120-h incubation. Results indicate that PR-26 could potentially be used as an antimicrobial agent, but applications in appropriate foods need to be validated.  相似文献   

10.
A protocol enabling simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains was devised and evaluated using artificially contaminated fresh produce. Association of Official Analytical Chemists (AOAC)-approved polymerase chain reaction (PCR) detection methods for three human pathogens were modified to enable simultaneous and real-time detection with high throughput capability. The method includes a melting-curve analysis of PCR products, which serves as confirmatory test. The modified protocol successfully detected all three pathogens when fresh produce was washed with artificially contaminated water containing E. coli O157:H7 and S. typhimurium down to the predicted level of 1 to 10 cells/ml and L. monocytogenes at 1000 cells/ml. The ability to monitor several pathogens simultaneously will save time and increase our ability to assure food safety.  相似文献   

11.
ABSTRACT: Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in iceberg lettuce by aqueous chlorine dioxide (ClO2) treatment was evaluated. Iceberg lettuce samples were inoculated with approximately 7 log CFU/g of E. coli O157:H7, S. typhimurium, and L. monocytogenes. Iceberg lettuce samples were then treated with 0, 5, 10, or 50 ppm ClO2 solution and stored at 4 °C. Aqueous ClO2 treatment significantly decreased the populations of pathogenic bacteria on shredded lettuce (P < 0.05). In particular, 50 ppm ClO2 treatment reduced E. coli O157:H7, S. typhimurium, and L. monocytogenes by 1.44, 1.95, and 1.20 log CFU/g, respectively. The D10‐values of E. coli O157:H7, S. typhimurium, and L. monocytogenes in shredded lettuce were 11, 26, and 42 ppm, respectively. The effect of aqueous ClO2 treatment on the growth of pathogenic bacteria during storage was evaluated, and a decrease in the population size of these pathogenic bacteria was observed. Additionally, aqueous ClO2 treatment did not affect the color of lettuce during storage. These results suggest that aqueous ClO2 treatment can be used to improve the microbial safety of shredded lettuce during storage.  相似文献   

12.
The production of thermally concentrated fruit juices uses temperatures high enough to achieve at least a 5-log reduction of pathogenic bacteria that can occur in raw juice. However, the transportation and storage of concentrates at low temperatures prior to final packaging is a common practice in the juice industry and introduces a potential risk for postconcentration contamination with pathogenic bacteria. The present study was undertaken to evaluate the likelihood of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella surviving in cranberry, lemon, and lime juice concentrates at or above temperatures commonly used for transportation or storage of these concentrates. This study demonstrates that cranberry, lemon, and lime juice concentrates possess intrinsic antimicrobial properties that will eliminate these bacterial pathogens in the event of postconcentration recontamination. Bacterial inactivation was demonstrated under all conditions; at least 5-log Salmonella inactivation was consistently demonstrated at -23 degrees C (-10 degrees F), at least 5-log E. coli O157:H7 inactivation was consistently demonstrated at -11 degrees C (12 degrees F), and at least 5-log L. monocytogenes inactivation was consistently demonstrated at 0 degrees C (32 degrees F).  相似文献   

13.
《Food microbiology》2004,21(5):611-616
Listeria monocytogenes and Escherichia coli O157:H7 are major foodborne pathogens implicated in various outbreaks involving pasteurized or unpasteurized milk, and various dairy products. The objective of this study was to determine the antibacterial effect of caprylic acid (CA, C8:0) and its monoglyceride, monocaprylin (MC) on L. monocytogenes and E. coli O157:H7 in whole milk. A five-strain mixture of E. coli O157:H7 or L. monocytogenes was inoculated in autoclaved milk (106 CFU/ml) containing 0, 25, or 50 mM of CA or MC. At 37°C, all the treatments, excepting 25 mm CA, reduced the population of both pathogens by approximately 5.0 log CFU/ml in 6 h. At 24 h of storage at 8°C, MC at both levels and CA at 50 mM decreased L. monocytogenes and E. coli O157:H7, respectively by >5.0 log CFU/ml. At 48 h of 4°C storage, populations of L. monocytogenes and E. coli O157:H7 were decreased to below detection level (enrichment negative) by 50 mm of MC and CA, respectively. Results indicate that MC could potentially be used to inhibit L. monocytogenes and E. coli O157:H7 in milk and dairy products, but sensory studies need to be conducted before recommending their use.  相似文献   

14.
ABSTRACT:  We have evaluated bactericidal activities against Bacillus cereus , Escherichia coli O157:H7, Listeria monocytogenes , and Salmonella enterica of several antimicrobial wine recipes, each consisting of red or white wine extracts of oregano leaves with added garlic juice and oregano oil. Dose-response plots were used to determine the percentage of the recipes that resulted in a 50% decrease in colony-forming units (CFU) at 60 min (BA50). Studies designed to optimize antibacterial activities of the recipes demonstrated that several combinations of the naturally occurring plant-derived ingredients rapidly inactivated the above mentioned 4 foodborne pathogens. We also showed that (a) incubation temperature affected activities in the following order: 37 °C > 21 °C > 4 °C; (b) varying the initial bacterial concentrations from 103 to 104 to 105 CFU/well did not significantly affect BA50 values; (c) storage of 3 marinades up to 2 mo did not change their effectiveness against Salmonella enterica ; and (d) polyphenolic compounds isolated by chromatography from red wine exhibited exceptional activity at nanogram levels against 2 strains of Bacillus cereus . These observations suggest that antimicrobial wine formulations have the potential to improve the microbiological safety of foods.  相似文献   

15.
The effects of ohmic heating on reduction of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in orange and tomato juice were investigated. Orange and tomato juice inoculated with E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes were subjected to ohmic heating with selected parameters including electric field strength from 10 to 20 V/cm and treatment times from 0 to 540 s. The number of pathogens was reduced by increasing the electric field strength from 10 to 20 V/cm as well as increasing treatment time. The population of E. coli O157:H7 was reduced more than 5 log after 120, 210, and 540 s of treatment in orange juice with 20, 15, and 10 V/cm electric field strengths, respectively. In tomato juice, levels of E. coli O157:H7 were reduced more than 5 log after 90, 180, and 480 s with the same electric field strengths. Similar phenomena were observed for Salmonella Typhimurium and L. monocytogenes, but E. coli O157:H7 was the most resistant to ohmic heating treatment. These results show that ohmic heating is potentially useful for inactivation of E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes and that the effect of inactivation depends on applied electric field strength, treatment time, pathogen species, and type of juice.  相似文献   

16.
17.
The purpose of this study was to evaluate the activity of a novel antimicrobial substance lauric arginate ester (LAE) against selected foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes and Salmonella spp.) in biofilm. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined and showed that LAE exhibits a strong antimicrobial activity. Biofilms were grown on abiotic stainless steel, rubber, MBEC biofilm device) and biotic (lettuce) surfaces. The efficacy of LAE (50, 100 and 200 ppm) at reducing the biofilm cells on these surfaces was examined by applying LAE for 2 h. Results revealed that LAE exhibited the reduction in biofilm bacteria up to 7 log CFU cm?2, 3.5 log CFU cm?2, 4.0 log CFU peg?1 and 1.5 log CFU cm?2 on stainless steel, rubber, MBEC and lettuce surfaces, respectively. Overall, these results suggest that LAE has been shown to be a potential alternative to control bacteria in biofilm mode in food industry.  相似文献   

18.
Alfalfa and other seed sprouts have been implicated in several Escherichia coli O157:H7 and Salmonella spp. human illness outbreaks in the U.S. Continuing food safety issues with alfalfa seeds necessitate the need for discovery and use of novel and effective antimicrobials. The potential use of caprylic acid (CA) and monocaprylin (MC) for reducing E. coli O157:H7 and Salmonella spp. populations on alfalfa seeds was evaluated. The effectiveness of three concentrations of CA and MC (25, 50, and 75 mM) to reduce E. coli O157:H7 and Salmonella spp. populations in 0.1% peptone water and on alfalfa seeds was evaluated. Surviving populations of E. coli O157:H7 and Salmonella spp. were enumerated by direct plating on tryptic soy agar (TSA). Non-inoculated alfalfa seeds were soaked for up to 120 min to evaluate the effect of CA and MC solutions on seed germination rate. For planktonic cells, the efficacy of the treatments was: 75 MC > 50 MC > 25 MC > 75 CA > 50 CA > 25 CA. Both E. coli O157:H7 and Salmonella spp. were reduced to below the detection limit (0.6 log CFU/ml) within 10 min of exposure to 75 MC from initial populations of 7.65 ± 0.10 log CFU/ml and 7.71 ± 0.11 log CFU/ml, respectively. Maximum reductions of 1.56 ± 0.25 and 2.56 ± 0.17 log CFU/g for E. coli O157:H7 and Salmonella spp., respectively, were achieved on inoculated alfalfa seeds (from initial populations of 4.74 ± 0.62 log CFU/g and 5.27 ± 0.20 log CFU/g, respectively) when treated with 75 MC for 90 min. Germination rates of CA or MC treated seeds ranged from 84% to 99%. The germination rates of CA or MC soaked seeds and water soaked seeds (control) were similar (P > 0.05) for soaking times of ≤ 90 min. Monocaprylin (75 mM) can be used to reduce E. coli O157:H7 and Salmonella spp. on alfalfa seeds without compromising seed viability.  相似文献   

19.
A multiplex PCR method was developed for simultaneous detection of Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7 in meat samples. DNA detection sensitivity for this method was 10(3) CFU/ml for each pathogen. When this protocol was used for the detection of each of the above pathogenic bacteria in spiked pork samples, 1 cell per 25 g of inoculated sample could be detected within 30 h. In the samples of naturally contaminated meat, Salmonella spp., L. monocytogenes, and E. coli O157:H7 were detected over the same time period. Excellent agreement was obtained for the results of multiplex PCR and the conventional culture method, which suggests that the multiplex PCR is a reliable and useful method for rapid screening of meat products for Salmonella spp., L. monocytogenes, and E. coli O157:H7 contamination.  相似文献   

20.
One milliliter of culture containing a five-strain mixture of Escherichia coli O157:H7 (approximately 10(10) CFU) was inoculated on a 100-cm2 area marked on unscarred cutting boards. Following inoculation, the boards were air-dried under a laminar flow hood for 1 h, immersed in 2 liters of electrolyzed oxidizing water or sterile deionized water at 23 degrees C or 35 degrees C for 10 or 20 min; 45 degrees C for 5 or 10 min; or 55 degrees C for 5 min. After each temperature-time combination, the surviving population of the pathogen on cutting boards and in soaking water was determined. Soaking of inoculated cutting boards in electrolyzed oxidizing water reduced E. coli O157:H7 populations by > or = 5.0 log CFU/100 cm2 on cutting boards. However, immersion of cutting boards in deionized water decreased the pathogen count only by 1.0 to 1.5 log CFU/100 cm2. Treatment of cutting boards inoculated with Listeria monocytogenes in electrolyzed oxidizing water at selected temperature-time combinations (23 degrees C for 20 min, 35 degrees C for 10 min, and 45 degrees C for 10 min) substantially reduced the populations of L. monocytogenes in comparison to the counts recovered from the boards immersed in deionized water. E. coli O157:H7 and L. monocytogenes were not detected in electrolyzed oxidizing water after soaking treatment, whereas the pathogens survived in the deionized water used for soaking the cutting boards. This study revealed that immersion of kitchen cutting boards in electrolyzed oxidizing water could be used as an effective method for inactivating foodborne pathogens on smooth, plastic cutting boards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号