共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Samuel I. Stupp 《Advanced materials (Deerfield Beach, Fla.)》2020,32(20):1906741
Ranging from 2D assemblies to peptide amphiphile-based biomaterials, Prof. Samuel Stupp and his team have enriched the scientific community with many breakthroughs in the field of supramolecular self-assembly. This Interview offers the unique possibility to share some highlights along his journey, providing also a glimpse to his vision of the future of supramolecular chemistry. Interdisciplinarity is an integral part of Prof. Stupp's research philosophy, and, using his own words, “it is the only way to understand the complex universe around us and help society along the way”. What a great guideline to us all! 相似文献
3.
纳米材料的分子自组装合成述评 总被引:6,自引:0,他引:6
简要介绍了分子自组装技术的基本原理,概述了一些常见纳米材料的自组装合成方法,并例举了四种典型纳米材料(纳米管、多孔物质、自组装膜、有机/无机纳米复合体)合成化学的研究现状,通过与传统合成法的对比,指出自组装合成可以方便地实现结构和性能的预期调控,具有其它手段无可取代的优越性。 相似文献
4.
5.
Ling Wang Augustine M. Urbas Quan Li 《Advanced materials (Deerfield Beach, Fla.)》2020,32(41):1801335
Liquid crystals (LCs) are omnipresent in living matter, whose chirality is an elegant and distinct feature in certain plant tissues, the cuticles of crabs, beetles, arthropods, and beyond. Taking inspiration from nature, researchers have recently devoted extensive efforts toward developing chiral liquid crystalline materials with self-organized nanostructures and exploring their potential applications in diverse fields ranging from dynamic photonics to energy and safety issues. In this review, an account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided. First, an overview on the significance of chiral liquid crystalline architectures in various living systems is given. Then, the recent significant progress in different chiral liquid crystalline systems including thermotropic LCs (cholesteric LCs, cubic blue phases, achiral bent-core LCs, etc.) and lyotropic LCs (DNA LCs, nanocellulose LCs, and graphene oxide LCs) is showcased. The review concludes with a perspective on the future scope, opportunities, and challenges in these truly advanced functional soft materials and their promising applications. 相似文献
6.
Bicontinuous cubic phases offer advantageous routes to a broad range of applied materials ranging from drug delivery devices to membranes. However, a priori design of molecules that assemble into these phases remains a technological challenge. In this article, a high-throughput synthesis of lipidoids that undergo protonation-driven self-assembly (PrSA) into liquid crystalline (LC) phases is conducted. With this screening approach, 12 different multi-tail lipidoid structures capable of assembling into the bicontinuous double gyroid phase are discovered. The large volume of small-angle X-ray scattering (SAXS) data uncovers unexpected design criteria that enable phase selection as a function of lipidoid headgroup size and architecture, tail length and architecture, and counterion identity. Surprisingly, combining branched headgroups with bulky tails forces lipidoids to adopt unconventional pseudo-disc conformations that pack into double gyroid networks, entirely distinct from other synthetic or biological amphiphiles within bicontinuous cubic phases. From a multitude of possible applications, two examples of functional materials from lipidoid liquid crystals are demonstrated. First, the fabrication of gyroid nanostructured films by interfacial PrSA, which are rapidly responsive to the external medium. Second, it is shown that colloidally-dispersed lipidoid cubosomes, for example, for drug delivery, are easily assembled using top-down solvent evaporation methods. 相似文献
7.
Wang Li Ke Sun Lisong Yang Xi Mao Shuai Deng Hui Jiang Pan Gu Bowen Cao Wen Li Mingdong Yi Colin D. Bain Renhua Deng Jintao Zhu 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(11):2207468
In situ fabrication of macroscale ordered monolayers of nanoparticles (NPs) on targeted substrates is highly desirable for precision electronic and optical devices, while it remains a great challenge. In this study, a solution is provided to address this challenge by developing a colloidal ink formulation and employing the direct-ink-writing (DIW) technique, where on-demand delivery of ink at a targeted location and directional evaporation with controllable rate are leveraged to precisely guide the deposition of polystyrene-grafted gold NPs (Au@PS NPs) into a macroscale monolayer with an ordered Au NP array embedded in a PS thin film. A 2D steady-state diffusion-controlled evaporation model, which explains the parameter dependence of the experimental results and gives semiquantitative agreement with the experimental evaporation kinetics is proposed. The ordered monolayer is used as both nanocrystal floating gates and the tunneling layer for nonvolatile memory devices. It shows significantly enhanced performance compared with a disordered NP film prepared by spin coating. This approach allows for fine control of NP self-assembly to print macroscaleordered monolayers directly onto substrates, which has great promise for application in broad fields, including microelectronic and photoelectronic devices, sensors, and functional coatings. 相似文献
8.
9.
The counterfeiting of goods is growing worldwide, affecting practically any marketable item ranging from consumer goods to human health. Anticounterfeiting is essential for authentication, currency, and security. Anticounterfeiting tags based on structural color materials have enjoyed worldwide and long‐term commercial success due to their inexpensive production and exceptional ease of percept. However, conventional anticounterfeiting tags of holographic gratings can be readily copied or imitated. Much progress has been made recently to overcome this limitation by employing sufficient complexity and stimuli‐responsive ability into the structural color materials. Moreover, traditional processing methods of structural color tags are mainly based on photolithography and nanoimprinting, while new processing methods such as the inkless printing and additive manufacturing have been developed, enabling massive scale up fabrication of novel structural color security engineering. This review presents recent breakthroughs in structural color materials, and their applications in optical encryption and anticounterfeiting are discussed in detail. Special attention is given to the unique structures for optical anticounterfeiting techniques and their optical aspects for encryption. Finally, emerging research directions and current challenges in optical encryption technologies using structural color materials is presented. 相似文献
10.
纳米结构的构造在整个纳米科技中有着特殊重要的意义.如何低成本、大规模地实现纳米结构材料的控制合成与组装一直是纳米加工中的热点问题.高分子嵌段共聚物分子结构独特,包含着热力学不相容的不同高分子嵌段,并由化学键相连.通过控制外界条件,嵌段共聚物可以自组装成高度规则的超分子结构,特征尺寸为10nln~100nm.以嵌段共聚物膜自组装相分离图案为模板,或把这种图案复制到其它材料上,通过刻蚀等技术可以制备纳米结构模板,再经纳米铸造得到相应结构的纳米材料和纳米器件,文中主要介绍嵌段共聚物自组装模板的原理、模板图案的调控方法和模板应用,并详细阐述了各自的发展状况。 相似文献
11.
The formation of nanostructured materials by using colloidal crystals as templates is a relatively new but rapidly growing area of materials science. Colloid crystalline templates are three‐dimensional close‐packed crystals of submicrometer spheres, whose long‐ranged ordered structure is replicated in a solid matrix, to yield materials with ordered pores. These materials hold promise for use as photonic crystals, advanced catalysts, and in a variety of other applications. Here we review the wide range of materials that have been made following the original synthesis of structured porous silica. This method has been recently modified to produce porous metals. 相似文献
12.
13.
纳米结构苯胺/吡咯共聚物的静态法合成及自组装 总被引:2,自引:0,他引:2
采用静态聚合法,以过硫酸铵为氧化剂,使苯胺与吡咯进行共聚,制备了高产率(88%)的纳米结构苯胺/吡咯(PANPY)共聚物。研究结果发现,苯胺/吡咯摩尔比和聚合介质对共聚物的形貌有重大影响。以1.0 mol/L盐酸溶液为介质,苯胺/吡咯摩尔比为90/10时,可制得直径为70 nm~90 nm、长为1.3μm的共聚物纳米纤维;苯胺/吡咯摩尔比为50/50时,得到平均粒径约为400 nm的杨梅球状共聚物颗粒,透射电子显微镜的结果表明这些杨梅球状共聚物颗粒是由直径为5nm,长25nm的共聚物微小纳米纤维自组装而成。而以0.1 mol/L NaOH水溶液为反应介质,则可以得到外直径为1.8μm~2.6μm的自组装共聚物微球。 相似文献
14.
15.
羟基磷灰石(hydroxyapatite,HAP)与人体硬组织主要无机组分具有相同的化学组成,因而被认为具备良好的生物相容性、可降解性和生物活性,并已在生物医学领域得到广泛应用.迄今为止,形态丰富的HAP纳米材料及其合成方法已经被报道出来,但是具有仿生有序结构的HAP材料及其制备方法仍然是相关领域最具挑战性的方向.在包... 相似文献
16.
高氮含量的有序氮氧化物介孔材料的研究 总被引:2,自引:0,他引:2
通过使用氨气作氮源,氮化介孔氧化硅和含铝氧化硅(SBA-15和Al-MCM-41)的前驱体(含模板剂),成功制备出高氮含量的有序氮氧化物介孔材料。主要氮化条件为:1273~1323K,8~24h.采用 CNH元素分析、红外光谱、Si固体核磁共振谱(MASNMR)、N2吸附-脱附分析、小角XRD和高分辨透射电镜(HRTEM)进行表征,分析结果表明经过高温长时间氮化制备出的高氮含量(~21wt%)的氮氧化硅和含铝氮氧化硅介孔材料仍然具有高达700~900m2g-1的比表面积、窄的孔径分布和良好的有序性. 相似文献
17.
以自合成的平均粒径为95.7 nm、粒径分布指数为0.047的聚苯乙烯乳胶粒为种子,采用种子乳液聚合方法制备出单分散的聚苯乙烯乳胶粒,探讨了控制胶粒粒径大小及分布的方法及制备条件.结果表明,在种子乳液聚合中,通过控制单体加入量和乳化剂的补加速度,可以得到单分散聚苯乙烯乳胶粒;当没有新的胶束生成且乳胶粒子没有发生聚结时,乳胶粒尺寸和分布有自身变窄的倾向,得到了平均粒径为261.6 nm、粒径分布指数为0.021的单分散乳胶粒.采用毛细管作用力驱动的微粒自组装技术进行单分散胶粒的组装,获得了二维有序聚苯乙烯胶体晶体,并用场发射扫描电子显微镜表征了其二维有序结构. 相似文献
18.
Yaping Xu Haixin Zhang Haoyue Su Jianjun Ma Hao Yu Kehuan Li Junjuan Shi Xin-Qi Hao Kun Wang Bo Song Ming Wang 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(29):2300009
Three-dimensional (3D) structures constructed via coordination-driven self-assemblies have recently garnered increasing attention due to the challenges in structural design and potential applications. In particular, developing new strategy for the convenient and precise self-assemblies of 3D supramolecular structures is of utmost interest. Introducing the concept of self-coordination ligands, herein the design and synthesis of two meta-modified terpyridyl ligands with selective self-complementary coordination moiety are reported and their capability to assemble into two hourglass-shaped nanocages SA and SB is demonstrated. Within these 3D structures, the meta-modified terpyridyl unit preferably coordinates with itself to serve as concave part. By changing the arm length of the ligands, hexamer (SA) and tetramer (SB) are obtained respectively. In-depth studies on the assembly mechanism of SA and SB indicate that the dimers could be formed first via self-complementary coordination and play crucial roles in controlling the final structures. Moreover, both SA and SB can go through hierarchical self-assemblies in solution as well as on solid–liquid interface, which are characterized by transmission electron microscope (TEM) and scanning tunneling microscopy (STM). It is further demonstrated that various higher-order assembly structures can be achieved by tuning the environmental conditions. 相似文献
19.
20.
Maciej Bagiński Martyna Tupikowska Guillermo González-Rubio Michał Wójcik Wiktor Lewandowski 《Advanced materials (Deerfield Beach, Fla.)》2020,32(1):1904581
The availability of helical assemblies of plasmonic nanoparticles with precisely controlled and tunable structures can play a key role in the future development of chiral plasmonics and metamaterials. Here, a strategy to efficiently yield helical structures based on the cooperative interactions of liquid crystals and gold nanoparticles in thin films is developed. These nanocomposites exhibit exceptional long-range hierarchical order across length scales, which results from the growth mechanism of nanoparticle-coated twisted nanoribbons and their ability to form organized bundles. The helical assembly formation is governed by the presence of rationally functionalized nanoparticles. Importantly, the thickness of the achieved nanocomposites can be reversibly reconfigured owing to the polymorphic nature of the liquid crystal. The versatility of the proposed approach is demonstrated by preparing helices assembled from nanoparticles of different geometries and dimensions (spherical and rod-like). The described strategy may become an enabling technology for structuring nanoparticle assemblies with high precision and fabricating optically active materials. 相似文献