首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Supramolecular self-assembly has proven to be a reliable approach towards versatile nanomaterials based on multiple weak intermolecular forces. In this review, the development of bio-inspired supramolecular self-assembly into soft materials and their applications are summarized. Molecular systems used in bio-inspired “bottom-up self-assembly” involve small organic molecules, peptides or proteins, nucleic acids, and viruses. Self-assembled soft nanomaterials have been exploited in various applications such as inorganic nanomaterial synthesis, drug or gene delivery, tissue engineering, and so on.  相似文献   

2.
Peptide‐based materials are one of the most important biomaterials, with diverse structures and functionalities. Over the past few decades, a self‐assembly strategy is introduced to construct peptide‐based nanomaterials, which can form well‐controlled superstructures with high stability and multivalent effect. More recently, peptide‐based functional biomaterials are widely utilized in clinical applications. However, there is no comprehensive review article that summarizes this growing area, from fundamental research to clinic translation. In this review, the recent progress of peptide‐based materials, from molecular building block peptides and self‐assembly driving forces, to biomedical and clinical applications is systematically summarized. Ex situ and in situ constructed nanomaterials based on functional peptides are presented. The advantages of intelligent in situ construction of peptide‐based nanomaterials in vivo are emphasized, including construction strategy, nanostructure modulation, and biomedical effects. This review highlights the importance of self‐assembled peptide nanostructures for nanomedicine and can facilitate further knowledge and understanding of these nanosystems toward clinical translation.  相似文献   

3.
Self-assembly of molecular or nonmolecular components by non-covalent interactions offers an invaluable tool for the preparation of discrete nanostructures and extended 2D and 3D materials, which are often not accessible by any other fabrication process. In this article we summarize the most recent advances in the generation of nanomaterials such as self-assembled monolayers (SAMs) and structures formed from amphiphilic molecules, colloids, peptides, and polymers by nontemplated self-assembly either at the solid state or in solution. The current status of templated self-assembly and the use of self-assembled structures as template and for patterning other materials is also covered. A special emphasis is placed on strategies presenting either original and somehow exploratory approaches, eventually combining bottom-up and top-down methods, or that concern methods for the production of materials with potential application, e.g., in photonics, as sensors, for drug delivery and electric and magnetic devices. In all the sections, we outline self-organization and applications enabled with self-separated block copolymers.  相似文献   

4.
One of the major pursuits of biomedical science is to develop advanced strategies for theranostics, which is expected to be an effective approach for achieving the transition from conventional medicine to precision medicine. Supramolecular assembly can serve as a powerful tool in the development of nanotheranostics with accurate imaging of tumors and real-time monitoring of the therapeutic process upon the incorporation of aggregation-induced emission (AIE) ability. AIE luminogens (AIEgens) will not only enable fluorescence imaging but will also aid in improving the efficacy of therapies. Furthermore, the fluorescent signals and therapeutic performance of these nanomaterials can be manipulated precisely owing to the reversible and stimuli-responsive characteristics of the supramolecular systems. Inspired by rapid advances in this field, recent research conducted on nanotheranostics with the AIE effect based on supramolecular assembly is summarized. Here, three representative strategies for supramolecular nanomaterials are presented as follows: a) supramolecular self-assembly of AIEgens, b) the loading of AIEgens within nanocarriers with supramolecular assembly, and c) supramolecular macrocycle-guided assembly via host–guest interactions. Meanwhile, the diverse applications of such nanomaterials in diagnostics and therapeutics have also been discussed in detail. Finally, the challenges of this field are listed in this review.  相似文献   

5.
Currently, the development of circularly polarized luminescent (CPL) materials has drawn extensive attention due to the numerous potential applications in optical data storage, displays, backlights in 3D displays, and so on. While the fabrication of CPL-active materials generally requires chiral luminescent molecules, the introduction of the “self-assembly” concept offers a new perspective in obtaining the CPL-active materials. Following this approach, various self-assembled materials, including organic-, inorganic-, and hybrid systems can be endowed with CPL properties. Benefiting from the advantages of self-assembly, not only chiral molecules, but also achiral species, as well as inorganic nanoparticles have potential to be self-assembled into chiral nanoassemblies showing CPL activity. In addition, the dissymmetry factor, an important parameter of CPL materials, can be enhanced through various pathways of self-assembly. Here, the present status and progress of self-assembled nanomaterials with CPL activity are reviewed. An overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.  相似文献   

6.
Histidine, a versatile proteinogenic amino acid, plays a broad range of roles in all living organisms and behaves as a key mediator of the interactions of biomolecules with inorganic constituents. The self-assembly of histidine-rich peptides and proteins is critical in biology, as the histidine unit is both a multifunctional regulator and an ideal motif for the construction of complex biological structures. In particular, non-covalent interactions between the imidazole ring and other molecular building blocks and metal ions are routinely employed to generate these complexes. Therefore, this strategy can be duplicated in an artificial context to create sophisticated bioactive materials. In this review, we first highlight a clear perspective of the bio-inspired design strategies which can replicate the hierarchical structure of biological systems allowing the engineering of the supramolecular self-assembly of histidine-functionalized peptides. We further summarize advancements in the field of peptide supramolecular structures incorporating histidine residues in the peptide backbone to generate organized functional supramolecular biomaterials with customizable features. We also discuss significant advances and future prospects in supramolecular self-assembly of histidine-functionalized peptides, as well as provide an overview of advanced techniques for the fabrication of histidine-based biomaterials for bio-nanotechnology, optoelectronic engineering, and biomedicine. Overall, artificial supramolecular materials based on histidine functionalized peptides, motivated by the intriguing properties discovered in natural proteins, bear the potential to boost the creation of sustainable bio-inspired materials.  相似文献   

7.
Efficient exfoliation of layered materials has attracted considerable attention in various applications due to their superior photoelectric, physical and chemical properties. Here, we report a universal, rapid approach to prepare the two-dimensional (2D) nanosheets and zero-dimensional (0D) quantum dots (QDs) using a simple cryo-mediation liquid phase exfoliation of layered materials (graphite, MoS2, WS2). The QDs decorated nanosheets 0D/2D homostructure can be subsequently formed by the self-assembly of the as-exfoliated QDs and nanosheets. The unique structural properties of the mono- or few-layer mesoporous nanosheets interspersed with QDs can expose abundant active edge sites as well as improve the conductivity, which exhibits excellent activity and stability towards electrocatalytic hydrogen evolution reaction (HER). This work offers a powerful methodology to prepare 2D homostructures from a variety of layered materials.  相似文献   

8.
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (π π stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.  相似文献   

9.
Various biological systems rely on the supramolecular assembly of biomolecules through noncovalent bonds for performing sophisticated functions. In particular, cell membranes, which are 2D structures in biological systems, have various characteristics such as a large surface, flexibility, and molecule-recognition ability. Supramolecular 2D materials based on biological systems provide a novel perspective for the development of functional 2D materials. The physical and chemical properties of 2D structures, attributed to their large surface area, can enhance the sensitivity of the detection of target molecules, molecular loading, and bioconjugation efficiency, suggesting the potential utility of functional 2D materials as candidates for biological systems. Although several types of studies on supramolecular 2D materials have been reported, supramolecular biofunctional 2D materials have not been reviewed previously. In this regard, the current advances in 2D material development using molecular assembly are discussed with respect to the rational design of self-assembling aromatic amphiphiles, the formation of 2D structures, and the biological applications of functional 2D materials.  相似文献   

10.
Hierarchical self-assembly of small abiotic molecular modules interacting through noncovalent forces is increasingly being used to generate functional structures and materials for electronic, catalytic, and biomedical applications. The greatest control over the geometry in H-bond supramolecular architectures, especially in H-bonded supramolecular polymers, can be achieved by using conformationally rigid molecular modules undergoing self-assembly through strong H-bonds. Their binding strength depends on the multiplicity of the H-bonds, the nature of donor/acceptor pairs and their secondary attractive/repulsive interactions. Here a functionalized molecular module is described, which is capable of self-associating through self-complementary H-bonding patterns comprising four strong and two medium-strength H-bonds to form dimers. The self-association of these phenylpyrimidine-based dimers through directional H-bonding between two lateral pyridin-2(1H)-one units of neighboring molecules allows the formation of highly compact 1D supramolecular polymers by self-assembly on graphite. A concentration-dependent study by scanning tunneling microscopy at the solid-liquid interface, corroborated by dispersion-corrected density functional studies, reveals the controlled generation of either linear supramolecular 2D arrays, or long helical supramolecular polymers with a high shape persistence.  相似文献   

11.
Nanoscience and nanotechnology require development of nanomaterials that are amiable for molecular design from bottom up. Molecular designer self-assembling peptides are one of such nanomaterials that will become increasingly important for the endeavor. Peptides have not only been used in all aspects of biomedical and pharmaceutical research and medical products, but also have had enormous impact in nascent field of designed biological materials. We here report the dynamic structures of lipid-like designer peptide A6D (AAAAAAD) and A6K (AAAAAAK) that undergo self-assembly into nanotubes in water and salt solution. We not only analyzed their self-assemblies using dynamic light scattering to determine the critical aggregation concentration (CAC), but also use atomic force microscope to observe their nanostructures. We also propose a simple scheme by which these lipid-like peptides self-assemble into dynamic nanostructures. Since the knowledge of CAC is important for uses of these peptides for a variety of applications, these findings may have significant implications in the study of molecular self-assembly and for a wide range of utilities of designer self-assembling peptide materials.  相似文献   

12.
As an important noncovalent interaction, cation–π interaction plays an essential role in a broad area of biology and chemistry. Despite extensive studies in protein stability and molecular recognition, the utilization of cation–π interaction as a major driving force to construct supramolecular hydrogel remains uncharted. Here, a series of peptide amphiphiles are designed with cation–π interaction pairs that can self-assemble into supramolecular hydrogel under physiological condition. The influence of cation–π interaction is thoroughly investigated on peptide folding propensity, morphology, and rigidity of the resultant hydrogel. Computational and experimental results confirm that cation–π interaction could serve as a major driving force to trigger peptide folding, resultant β-hairpin peptide self-assembled into fibril-rich hydrogel. Furthermore, the designed peptides exhibit high efficacy on cytosolic protein delivery. As the first case of using cation–π interactions to trigger peptide self-assembly and hydrogelation, this work provides a novel strategy to generate supramolecular biomaterials.  相似文献   

13.
Cancer remains one of the leading causes of death, which has continuously stimulated the development of numerous functional biomaterials with anticancer activities. Herein is reviewed one recent trend of biomaterials focusing on the advances in enzyme‐instructed supramolecular self‐assembly (EISA) with anticancer activity. EISA relies on enzymatic transformations to convert designed small‐molecular precursors into corresponding amphiphilic residues that can form assemblies in living systems. EISA has shown some advantages in controlling cell fate from three aspects. 1) Based on the abnormal activity of specific enzymes, EISA can differentiate cancer cells from normal cells. In contrast to the classical ligand–receptor recognition, the targeting capability of EISA relies on dynamic control of the self‐assembly process. 2) The interactions between EISA and cellular components directly disrupt cellular processes or pathways, resulting in cell death phenotypes. 3) EISA spatiotemporally controls the distribution of therapeutic agents, which boosts drug delivery efficiency. Therefore, with regard to the development of EISA, the aim is to provide a perspective on the future directions of research into EISA as anticancer theranostics.  相似文献   

14.
Revealing the structural evolution mechanisms of supramolecular self-assembly can facilitate the exploitation of new self-assembly pathways and various functional materials. Here, this work reports a unique intramolecular rotation-induced structural evolution of supramolecular assemblies from a metastable state to a thermodynamically stable state using a twisting D–A molecule. These self-assemblies are applied to the signal differentiation detection of toxic dimethylsulfide (DMS) vapors. The F161BT monomer of the inactive state is trapped in off-pathway metastable nanospheres, which can disassemble and induce the transformation of the F161BT monomer into an active state by crossing the energy barrier. Subsequently, the active monomer goes through the processes of nucleation and elongation, forming thermodynamically stable on-pathway microribbons. Adding seeds can accelerate the molecular conformational transformation, generating microribbons with controlled lengths. Opposite fluorescent responses are obtained when exposing the two aggregates to the DMS vapors, allowing the sensitive detection of DMS with enhanced selectivity, which offers tremendous potential in practical applications.  相似文献   

15.
Abstract

Electroactive one-dimensional (1D) nano-objects possess inherent unidirectional charge and energy transport capabilities along with anisotropic absorption and emission of light, which are of great advantage for the development of nanometer-scale electronics and optoelectronics. In particular, molecular nanowires formed by self-assembly of π-conjugated molecules attract increasing attention for application in supramolecular electronics. This review introduces recent topics related to electroactive molecular nanowires. The nanowires are classified into four categories with respect to the electronic states of the constituent molecules: electron donors, acceptors, donor–acceptor pairs and miscellaneous molecules that display interesting electronic properties. Although many challenges still remain for practical use, state-of-the-art 1D supramolecular nanomaterials have already brought significant advances to both fundamental chemical sciences and technological applications.  相似文献   

16.
纳米材料在纳米尺度展现出的特殊性质, 相较于宏观尺度材料表现出众多优异特性, 在力学、声学、光学、磁学、电学、热学等各种领域具有良好的应用前景。纳米材料的仿生自组装技术模拟活体生命活动, 使纳米材料基于非共价键的相互作用, 自发形成稳定结构, 现已成为制备纳米材料的主要方法之一。仿生自组装技术是“自上而下”方法中的重要技术手段, 这种合成方式有望代替传统的“自上而下”加工技术, 实现单个原子或分子在纳米尺度上构造特定结构和功能的器件。另外, 仿生自组装技术虽然以化学过程为主, 但又有物理过程, 并且结合了“仿生学”的优点, 具有定向构造纳米材料的特点, 是众多交叉学科的热门研究手段。本文重点介绍了纳米材料在形貌和性能调控中不同的仿生自组装合成策略, 包括屏蔽效应的位相选择自组装、双相界面协同效应的仿生自组装、场诱导定位效应的功能器件一体化制备、光诱导自组装以及羟基氢键驱动的分相自组装, 总结了仿生自组装纳米材料的特性, 归纳了自组装技术在传感器、表面拉曼散射、生物医疗等领域的应用, 并对纳米材料仿生自组装技术的发展前景进行了展望。  相似文献   

17.
Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures of pre‐assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self‐assembly and biomedicine, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide‐based nanomaterials constructed by the in vivo self‐assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self‐assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self‐assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation‐induced retention (AIR), are introduced, followed by their applications in high‐performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self‐assembled peptide‐based nanomaterials for translational medicine are concluded.  相似文献   

18.
Cluster materials have attracted much attention because of their unique chemical and physical properties, hitherto unseen in bulk materials. Inspired by the lipid self-assembly principle, a series of heterocluster Janus molecules (HCJMs) with atomic precision have been rationally designed and synthesized by connecting different clusters via covalent bonds for the construction of nanomaterials and nano-objects. Due to their amphiphilicity, HCJMs self-assemble into cluster-containing nanomaterials or nano-objects with versatile ordered structures beyond those observed in conventional crystals. Their hybrid composition and nanoscale size are also greatly advantageous in the study of their fine structure by electron microscopy techniques, and enable their formation mechanisms to be unraveled. Finally, the influence of the characteristics of the HCJMs on the structure and properties of the self-assembled nano-objects are explored comprehensively. This synthesis strategy will promote further development of cluster materials with advanced functions via rational molecular design toward the construction of hierarchical nanostructures via molecular self-assembly.  相似文献   

19.
The polymerization of diacetylene macromonomers based on oligopeptide-polymer conjugates yields conjugated polymers with multiple-helical quaternary structures. These polymers exhibit a rich dynamic folding behavior upon the addition of protic cosolvents. Thus, a helix-helix transition under helix-sense inversion was followed by a reversible helix-coil transition. Both transitions involved changes in the aggregation state of the multiple-helical superstructures. The resemblance of the observed consecutive and cooperative conformational transitions to those of biopolymers underlines the importance of supramolecular self-assembly as a pathway toward biofunctional materials with optoelectronic activity.  相似文献   

20.
X Li  X Du  Y Gao  J Shi  Y Kuang  B Xu 《Soft matter》2012,8(28):3402-3407
Here we report the generation of a novel class of supramolecular hydrogelators based on the integration of nucleobase, Arg-Gly-Asp (RGD) peptides, and glucosamine in a single molecule. These novel small molecule hydrogelators self-assemble in water to form stable supramolecular nanofibers/hydrogels and exhibit useful biostability. This approach provides a new opportunity for systematic exploration of the self-assembly of small biomolecules by varying any individual segment to generate a large array of supramolecular hydrogels for biological functions and for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号