首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The commonly used CdS/i-ZnO buffer system in Cu(In,Ga)Se2 (CIGS) thin-film solar cells was substituted by ZnS/(Zn,Mg)O. ZnS has a higher transmission in the short wavelength range due to the higher bandgap energy Eg = 3.7 eV compared to CdS with Eg = 2.4 eV. Unfortunately, in our experiments the resulting gain in short-circuit current density jSC as the result of reduced absorption losses in the blue wavelength region is mostly accompanied by a decrease in open-circuit voltage VOC of the devices with ZnS buffer. This contribution discusses possible explanations for the systematically lower open-circuit voltages of the devices with a ZnS buffer layer.The carrier collection properties of the devices with a ZnS buffer were investigated by electron beam induced current measurements in the junction configuration. The maximum of the collection probability for ZnS cells is located in the CIGS bulk and not near the buffer/CIGS interface like for solar cells with CdS buffer. Additionally, we observed a larger space charge width compared to devices with a CdS buffer. This finding concurs with the considerably lower capacitance values and also lower charge densities in ZnS-buffered devices, as determined by capacitance voltage measurements.Based on these findings, the main reason for the lower open-circuit voltages of our ZnS devices is that the charge densities are lower than for the CdS/i-ZnO cells.  相似文献   

2.
CuIn1 − xGaxSe2 (CIGS) solar cells show a good spectral response in a wide range of the solar spectrum and the bandgap of CIGS can be adjusted from 1.0 eV to 1.7 eV by increasing the gallium-to-indium ratio of the absorber. While the bandgaps of Ga-rich CIGS or CGS devices make them suitable for top or intermediate cells, the In rich CIGS or CIS devices are well suited to be used as bottom cells in tandem solar cells. The photocurrent can be adapted to the desired value for current matching in tandem cells by changing the composition of CIGS which influences the absorption characteristics. Therefore, CIGS layers with different [Ga]/[In + Ga] ratios were grown on Mo and ZnO:Al coated glass substrates. The grain size, composition of the layers, and morphology strongly depend on the Ga content. Layers with Ga rich composition exhibit smaller grain size and poor photovoltaic performance. The current densities of CIGS solar cells on ZnO:Al/glass varied from 29 mA cm− 2 to 13 mA cm− 2 depending on the Ga content, and 13.5% efficient cells were achieved using a low temperature process (450 °C). However, Ga-rich solar cells exhibit lower transmission than dye sensitized solar cells (DSC). Prospects of tandem solar cells combining a DSC with CIGS are presented.  相似文献   

3.
A series of CuIn1 − xGaxSe2 solar cells with varied Ga content (0 ≤ x ≤ 1) was prepared using a three-stage co-evaporation process. The grain sizes of these devices vary with gallium content, exhibiting a maximum for approximately x = 0.2, which does not coincide with the maximum of the solar conversion efficiency observed between 0.34 < x < 0.37 for these devices.Admittance spectroscopy and drive-level capacitance profiling measurements were performed yielding a defect level with an activation energy of Ea = 0.1 eV which is independent of the amount of Ga and the grain size respectively. This defect closely resembles the N1 defect level reported in the literature. Only for relatively high Ga contents (x > 0.7) an additional defect appears. An equivalent circuit model describing a parallel connection of bulk and grain boundary capacitors allows us to conclude that the detected shallow defect is not predominantly located at the grain boundaries.  相似文献   

4.
Quantum efficiency measurements of state of the art Cu(In,Ga)Se2 (CIGS) thin film solar cells reveal current losses in the near infrared spectral region. These losses can be ascribed to inadequate optical absorption or poor collection of photogenerated charge carriers. Insight on the limiting mechanism is crucial for the development of more efficient devices. The electron beam induced current measurement technique applied on device cross‐sections promises an experimental access to depth resolved information about the charge carrier collection probability. Here, this technique is used to show that charge carrier collection in CIGS deposited by multistage co‐evaporation at low temperature is efficient over the optically active region and collection losses are minor as compared to the optical ones. Implications on the favorable absorber design are discussed. Furthermore, it is observed that the measurement is strongly affected by cross‐section surface recombination and an accurate determination of the collection efficiency is not possible. Therefore it is proposed and shown that the use of an Al2O3 layer deposited onto the cleaved cross‐section significantly improves the accuracy of the measurement by reducing the surface recombination. A model for the passivation mechanism is presented and the passivation concept is extended to other solar cell technologies such as CdTe and Cu2(Zn,Sn)(S,Se)4.  相似文献   

5.
Zinc cadmium sulfide (ZnxCd1 − xS) heterojunction partner layer prepared with chemical bath deposition (CBD) has exhibited better blue photon response and higher current densities due to its higher bandgap than that of conventional cadmium sulfide (CdS) layer for CuIn1 − xGaxS2 (CIGS2) solar cells. CIGS2/ZnxCd1 − xS devices have also shown higher open circuit voltage, Voc indicating improved junction properties. A conduction band offset has been observed by J-V curves at various temperatures indicating that still higher Voc can be obtained by optimizing the conduction band offset. This contribution discusses the effect of variation of parameters such as concentration of compounds, pH of solution and deposition time during CBD on device properties and composition and crystallinity of film. Efficiencies comparable to CIGS2/CdS devices have been achieved for CIGS2/ZnxCd1 − xS devices.  相似文献   

6.
The optical and electrical properties of electron-irradiated Cu(In,Ga)Se2 (CIGS) solar cells and the thin films that composed the CIGS solar cell structure were investigated. The transmittance of indium tin oxide (ITO), ZnO:Al, ZnO:Ga, undoped ZnO, and CdS thin films did not change for a fluence of up to 1.5 × 1018 cm− 2. However, the resistivity of ZnO:Al and ZnO:Ga, which are generally used as window layers for CIGS solar cells, increased with increasing irradiation fluence. For CIGS thin films, the photoluminescence peak intensity due to Cu-related point defects, which do not significantly affect solar cell performance, increased with increasing electron irradiation. In CIGS solar cells, decreasing JSC and increasing Rs reflected the influence of irradiated ZnO:Al, and decreasing VOC and increasing Rsh mainly tended to reflect the pn-interface properties. These results may indicate that the surface ZnO:Al thin film and several heterojunctions tend to degrade easily by electron irradiation as compared with the bulk of semiconductor-composed solar cells.  相似文献   

7.
Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.  相似文献   

8.
Deep levels in Cu(In1 − x,Gax)Se2 (CIGS) are studied by transient photocapacitance (TPC) spectroscopy by varying the Ga concentration, x, from 0.38 to 0.7. The TPC spectra of CIGS thin-film solar cells at 140 K exhibited a defect level with an optical transition energy of about 0.8 eV. The spectrum shape in the sub-bandgap region is independent of the Ga concentration. Therefore, the optical transition energy to the defect level is almost constant with about 0.8 eV from the valence band. The TPC signals for defect level are quenched by increasing temperature. The activation energy of thermal quenching is estimated to be about 0.3 eV. The thermal and optical activation processes are explained using configuration coordinate diagram.  相似文献   

9.
Implementing photovoltaic devices based on high efficiency thin‐film technologies on cheap, light‐weight and flexible polymeric substrates is highly appealing to cut down costs in industrial production and to accelerate very large scale deployment of photovoltaics in the upcoming years. Lift‐off processes, which allow separating active layers from primary substrates and subsequent transfer onto an alternative substrate without modifying the upstream production process and without performance losses, are an emerging alternative to direct growth on polymeric substrates. This study concerns the feasibily of direct mechanical lift‐off process for high efficiency Cu(In,Ga)Se2 (CIGS) thin film solar cells grown by coevaporation on glass/molybdenum substrates without performance losses. The study presents an in depth characterization (SEM,AFM,GIXRD,XPS) of samples leading to excellent lift‐off properties. They are explained by a specific gallium rich CIGS graded interface structure according to the interfacial sequence glass/Mo/MoSe2/GaxSey/Ga‐rich‐CIGS. The interfacial layer, attributed to GaSe, has a layered structure and out performs the molybdenum diselenide layered layer which forms spontaneously at the interface Mo/CIGS. It allows a very easy lift‐off process at the interface GaSe/CIGS thanks to Van‐der‐Waals adhesion mechanism in GaSe. Key physical‐chemical parameters are identified and analyzed. After lift‐off, an efficiency of 14.3%, higher than the initial reference CIGS solar cell efficiency (13.8%) is measured.  相似文献   

10.
The paper presents a two-dimensional simulation study of a polycrystalline Cu(In,Ga)Se2 (CIGS) solar cell with various shapes of grains inside the CIGS absorber layer. The grain boundaries (GBs) with a diverse valence-band offset (VBO) and the density of defect states (NtA) are considered so as to evaluate their effects on the performance of the CIGS cell. The numerical simulations show that a CIGS cell with column-like grains can achieve a high conversion efficiency (η), while the η of a CIGS cell with diamond-like grains is low if the VBO at the GBs exceeds 0.4 eV. The VBO at which the η of the CIGS cell with diamond-like grains peaks is found at 0.20-0.27 eV. A favorable VBO mainly depends on the shape of the grains, but it also depends on the NtA. The simulations of the CIGS cells in the substrate and superstrate configurations showed that their performances change if the VBO is varied. This result also implies that the configuration of the CIGS cell is important and the substrate configuration with larger grains in the space-charge region has a considerable advantage if the VBO ranges from 0 eV to 0.2 eV.  相似文献   

11.
The transport properties of thin-film solar cells based on wide-gap CuGaSe2 absorbers have been investigated as a function of the bulk [Ga]/[Cu] ratio ranging from 1.01 to 1.33. We find that (i) the recombination processes in devices prepared from absorbers with a composition close to stoichiometry ([Ga]/[Cu] = 1.01) are strongly tunnelling assisted resulting in low recombination activation energies (Ea) of approx. 0.95 eV in the dark and 1.36 eV under illumination. (ii) With an increasing [Ga]/[Cu] ratio, the transport mechanism changes to be dominated by thermally activated Shockley-Read-Hall recombination with similar Ea values of approx. 1.52-1.57 eV for bulk [Ga]/[Cu] ratios of 1.12-1.33. The dominant recombination processes take place at the interface between CdS buffer and CuGaSe2 absorber independently from the absorber composition. The increase of Ea with the [Ga]/[Cu] ratio correlates with the open circuit voltage and explains the better performance of corresponding solar cells.  相似文献   

12.
Application of the Sb-doping method to low-temperature (≤ 400 °C) processing of CuIn1 − xGaxSe2 − ySy (CIGS) solar cells is explored, using a hydrazine-based approach to deposit the absorber films. Power conversion efficiencies of 10.5% and 8.4% have been achieved for CIGS devices (0.45 cm2 device area) processed at 400 °C and 360 °C, respectively, with an Sb-incorporation level at 1.2 mol % (relative to the moles of CIGS). Significant Sb-induced grain size enhancement was confirmed for these low processing temperatures using cross-sectional scanning electron microscopy, and an average 2-3% absolute efficiency improvement was achieved in Sb-doped samples compared to their Sb-free sister samples. With Sb inclusion, the CIGS film grain growth temperature is lowered to well below 450 °C, a range compatible with flexible polymer substrate materials such as polyimide. This method opens up access to opportunities in low-temperature processing of CIGS solar cells, an area that is being actively pursued using both traditional vacuum-based as well as other solution-based deposition techniques.  相似文献   

13.
Reducing the Cu(In,Ga)Se2 (CIGS) thickness is one way of improving the throughput and capacity in existing production, provided that the efficiency can be kept at a high level. Our experimental results from an in-line co-evaporation process show that it is possible to produce CIGS solar cells with good efficiency at a CIGS thickness of less than 1 μm. An efficiency of 14.4% was obtained for an evaporation time of 8 min and a resulting CIGS thickness of only 0.8 μm. The quantum efficiency measurements show only a minor reduction of the collection in the infrared region that can be related to losses caused by reduced absorption. Passivation of the back contact has been found to be important for thin devices and one way of obtaining good back contact properties, or to reduce the impact of back contact recombination is to use an increased Ga content near the back contact. We have found that Ga grading is feasible also in the three stage process, i.e. a Ga-rich layer near the back contact from stage one is to a high degree retained also after stages two and three. In this paper we discuss the implication of efficiency reduction for the economy of the production and how high efficiency loss that can be tolerated, provided that the output is doubled at equal production cost for the CIGS layer.  相似文献   

14.
An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick‐layer‐based devices. Overall, double‐BHJ OSC with optimal ≈50 nm near‐infrared PDPP3T:PC71BM layer atop of ≈200 nm PTB7‐Th:PC71BM BHJ results in high power conversion efficiencies over 12%.  相似文献   

15.
Hydrogen effects on deep level defects and a defect generation in proton implanted Cu(In,Ga)Se2 (CIGS) based thin films for solar cell were investigated. CIGS films with a thickness of 3 μm were grown on a soda-lime glass substrate by a co-evaporation method, and then were implanted with protons. To study deep level defects in the proton implanted CIGS films, deep level transient spectroscopy measurements on the CIGS-based solar cells were carried out, these measurements found 6 traps (including 3 hole traps and 3 electron traps). In the proton implanted CIGS films, the deep level defects, which are attributed to the recombination centers of the CIGS solar cell, were significantly reduced in intensity, while a deep level defect was generated around 0.28 eV above the valence band maximum. Therefore, we suggest that most deep level defects in CIGS films can be controlled by hydrogen effects.  相似文献   

16.
In order to replace chemical bath deposited (CBD) CdS buffer layers in Cu(In,Ga)Se2 (CIGS) solar cells by an alternative material, InxSy thin-film buffer layers were prepared by ultrasonic spray pyrolysis at various substrate temperatures. X-ray Diffraction measurements confirmed that the films contained primarily the tetragonal In2S3 phase. X-ray Photoelectron Spectroscopy measurements revealed a small concentration of chlorine impurity throughout the InxSy layer. By depositing the indium sulphide layer as buffer layer in the CIGS solar cell configuration, a maximum solar cell efficiency of 8.9% was achieved, whilst the reference cell with CdS/CIGS on a similar absorber exhibited 12.7% efficiency. Additionally, light soaking enhanced the efficiency of InxSy/CIGS cells primarily by improvements in fill factor and open circuit voltage.  相似文献   

17.
Device engineering based on the tunable electronic properties of ternary transition metal dichalcogenides has recently gained widespread research interest. In this work, monolayer ternary telluride core/shell structures are synthesized using a one-step chemical vapor deposition process with rapid cooling. The core region is the tellurium-rich WSe2−2xTe2x alloy, while the shell is the tellurium-poor WSe2−2yTe2y alloy. The bandgap of the material is ≈1.45 eV in the core region and ≈1.57 eV in the shell region. The lateral gradient of the bandgap across the monolayer heterostructure allows for the fabrication of heterogeneous transistors and photodetectors. The difference in work function between the core and shell regions leads to a built-in electric field at the heterojunction. As a result, heterogeneous transistors demonstrate a unidirectional conduction and strong photovoltaic effect. The bandgap gradient and high mobility of the ternary telluride core/shell structures provide a unique material platform for novel electronic and photonic devices.  相似文献   

18.
Sulfurcell (SC) has been running a pilot production for thin-film solar modules using CuInS2-chalcopyrite (CIS) as absorber material since 2004. Since then production technology has been constantly improved with module power values exceeding 64 W, corresponding to an aperture area efficiency level of about 9%. Small area (0.5 cm2) cells cut out of such CIS modules reach maximum efficiencies close to 11%. Strong efforts have been made to develop a new sequential Cu(In,Ga)S2 (CIGS) process suitable for production of large-scale CIGS solar modules thereby enabling module efficiencies above 10%. CIGS-based solar cells are—quite similar to CIS-based modules—prepared from sputtered metals subsequently sulfurized using rapid thermal processing in sulfur vapor. Such Cu(In,Ga)S2 solar cells reach material record efficiencies about 13%. The cells are characterized by high open-circuit voltages up to 890 mV. Based on the results of the “Helmholtz Zentrum Berlin” (HZB), Sulfurcell has successfully scaled this process to our typical module size of 125 cm × 65 cm and is currently piloting the process for mass production. This paper will give an overview of electrical and structural parameters of world's first large-scale CIGS modules. CIGS module and cell parameters will be compared with standard CIS module and cell parameters and measured CIGS efficiency temperature coefficients will be compared with typical temperature coefficients of modules based on established PV technologies.  相似文献   

19.
R. Scheer 《Thin solid films》2011,519(21):7472-7475
We model some aspects of highly efficient CuIn xGaxSe2 solar cells with x ≈ 0.3 as well as wide band gap cells with x = 1 and ask for the dominant recombination mechanism which limits the Voc of these devices. For CuIn xGaxSe2 solar cells with x ≈ 0.3, interface recombination combined with Fermi-level pinning is a possible but unlikely recombination mechanism. We argue that these cells are rather limited by recombination in the quasi-neutral region (QNR) including the back contact. Using the expression for the QNR recombination rate we calculate the derivative of the collection function in the absorber at the space charge region edge which is in reasonable agreement with the experiment. It turns out that the diffusion length must approximate the absorber thickness. Based on this information, we draw a band diagram for a CuIn xGaxSe2 solar cells with x ≈ 0.3 and plot the simulated collection function. For cells with x = 1 (Cu-poor CuGaSe2), the experimental activation energy of the recombination rate mostly equals the absorber band gap, i.e. Ea ≈ Eg,a = 1.67 eV. As the experimental interface band gap is smaller than Ea, interface recombination must be ruled out. Thus, the carrier lifetime in the Cu-poor CuGaSe2 absorber should be so small that bulk recombination is more efficient than interface recombination. From this consideration, we postulate an electron lifetime value of 10−12 s for CuGaSe2.  相似文献   

20.
The objective of this work is to study the influence of Na on the properties of Cu(In,Ga)Se2 (CIGS) absorber layers and finished solar cell devices on polyimide substrates. For this study Na is added to 3-stage grown CIGS thin films by evaporation of a NaF precursor layer prior to the absorber deposition. The precursor layer modifies the CIGS growth kinetics. A stronger Ga-gradient and a decrease of grain size are observed when the Na content increases. An increase in Voc for a higher Na concentration at a nominal growth temperature of Tsub,max = 500 °C during CIGS deposition is explained by a higher carrier density, as obtained by DLCP measurements. The higher carrier concentration for the higher Na content could be attributed to the reduction of a compensating donor. However, a low Jsc does not allow for an enhanced efficiency possibly due to a shorter depletion region, as observed by admittance spectroscopy, and effective diffusion length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号