首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All‐inorganic perovskite solar cells have developed rapidly in the last two years due to their excellent thermal and light stability. However, low efficiency and moisture instability limit their future commercial application. The mixed‐halide inorganic CsPbI2Br perovskite with a suitable bandgap offers a good balance between phase stability and light harvesting. However, high defect density and low carrier lifetime in CsPbI2Br perovskites limit the open‐circuit voltage (Voc < 1.2 V), short‐circuit current density (Jsc < 15 mA cm?2), and fill factor (FF < 75%) of CsPbI2Br perovskite solar cells, resulting in an efficiency below 14%. For the first time, a CsPbI2Br perovskite is doped by Eu(Ac)3 to obtain a high‐quality inorganic perovskite film with a low defect density and long carrier lifetime. A high efficiency of 15.25% (average efficiency of 14.88%), a respectable Voc of 1.25 V, a reasonable Jsc of 15.44 mA cm?2, and a high FF of 79.00% are realized for CsPbI2Br solar cells. Moreover, the CsPbI2Br solar cells with Eu(Ac)3 doping demonstrate excellent air stability and maintain more than 80% of their initial power conversion efficiency (PCE) values after aging in air (relative humidity: 35–40%) for 30 days.  相似文献   

2.
All-inorganic CsPbI3 perovskite solar cells (PSCs) have been extensively studied due to their high thermal stability and unprecedented rise in power conversion efficiency (PCE). Recently, the champion PCE of CsPbI3 PSCs has reached up to 21%; however, it is still much lower than that of organic–inorganic hybrid PSCs. Interface modification to passivate surface defects and minimize charge recombination and trapping is important to further improve the efficiency of CsPbI3 PSCs. Herein, a new zwitterion ion is deposited at the interface between electron transporting layer (ETL) and perovskite layer to passivate the defects therein. The zwitterion ions can not only passivate oxygen vacancy (VO) and iodine vacancy (VI) defects, but also improve the band alignment at the ETL-perovskite interface. After the interface treatment, the PCE of CsPbI3 device reaches up to 20.67%, which is among the highest values of CsPbI3 PSCs so far. Due to the defect passivation and hydrophobicity improvement, the PCE of optimized device remains 94% of its original value after 800 h storing under ambient condition. These results provide an efficient way to improve the quality of ETL-perovskite interface by zwitterion ions for achieving high performance inorganic CsPbI3 PSCs.  相似文献   

3.
The emergence of cesium lead iodide (CsPbI3) perovskite solar cells (PSCs) has generated enormous interest in the photovoltaic research community. However, in general they exhibit low power conversion efficiencies (PCEs) because of the existence of defects. A new all‐inorganic perovskite material, CsPbI3:Br:InI3, is prepared by defect engineering of CsPbI3. This new perovskite retains the same bandgap as CsPbI3, while the intrinsic defect concentration is largely suppressed. Moreover, it can be prepared in an extremely high humidity atmosphere and thus a glovebox is not required. By completely eliminating the labile and expensive components in traditional PSCs, the all‐inorganic PSCs based on CsPbI3:Br:InI3 and carbon electrode exhibit PCE and open‐circuit voltage as high as 12.04% and 1.20 V, respectively. More importantly, they demonstrate excellent stability in air for more than two months, while those based on CsPbI3 can survive only a few days in air. The progress reported represents a major leap for all‐inorganic PSCs and paves the way for their further exploration in order to achieve higher performance.  相似文献   

4.
Cesium‐based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (Eloss) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI2Br absorber and polythiophene hole‐acceptor to minimize the Eloss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI2Br, can significantly reduce electron‐hole recombination within the perovskite, which is due to the electronic passivation of surface defect states. In addition, the interfacial properties are improved by a simple annealing process, leading to significantly reduced energy disorder in polythiophene and enhanced hole‐injection into the hole‐acceptor. Consequently, one of the highest power conversion efficiency (PCE) of 12.02% from a reverse scan in inorganic mixed‐halide perovskite solar cells is obtained. Modifying the perovskite films with annealing polythiophene enables an open‐circuit voltage (VOC) of up to 1.32 V and Eloss of down to 0.5 eV, which both are the optimal values reported among cesium‐lead mixed‐halide perovskite solar cells to date. This method provides a new route to further improve the efficiency of perovskite solar cells by minimizing the Eloss.  相似文献   

5.
Both the uncoordinated Pb2+ and excess PbI2 in perovskite film will create defects and perturb carrier collection, thus leading to the open-circuit voltage (VOC) loss and inducing rapid performance degradation of perovskite solar cells (PSCs). Herein, an additive of 3-aminothiophene-2-carboxamide (3-AzTca) that contains amide and amino and features a large molecular size is introduced to improve the quality of perovskite film. The interplay of size effect and adequate bonding strength between 3-AzTca and uncoordinated Pb2+ regulates the mineralization of PbI2 and generates low-dimensional PbI2 phase, thereby boosting the crystallization of perovskite. The decreased defect states result in suppressed nonradiative recombination and reduced VOC loss. The power conversion efficiency (PCE) of modified PSC is improved to 22.79% with a high VOC of 1.22 V. Moreover, the decomposition of PbI2 and perovskite films is also retarded, yielding enhanced device stability. This study provides an effective method to minimize the concentration of uncoordinated Pb2+ and improve the PCE and stability of PSCs.  相似文献   

6.
Cesium‐based inorganic perovskite solar cells (PSCs) are promising due to their potential for improving device stability. However, the power conversion efficiency of the inorganic PSCs is still low compared with the hybrid PSCs due to the large open‐circuit voltage (VOC) loss possibly caused by charge recombination. The use of an insulated shunt‐blocking layer lithium fluoride on electron transport layer SnO2 for better energy level alignment with the conduction band minimum of the CsPbI3‐xBrx and also for interface defect passivation is reported. In addition, by incorporating lead chloride in CsPbI3‐xBrx precursor, the perovskite film crystallinity is significantly enhanced and the charge recombination in perovksite is suppressed. As a result, optimized CsPbI3‐xBrx PSCs with a band gap of 1.77 eV exhibit excellent performance with the best VOC as high as 1.25 V and an efficiency of 18.64%. Meanwhile, a high photostability with a less than 6% efficiency drop is achieved for CsPbI3‐xBrx PSCs under continuous 1 sun equivalent illumination over 1000 h.  相似文献   

7.
In recent years, carbon-based CsPbI2Br perovskite solar cells (PSCs) have attracted more attention due to their low cost and good stability. However, the power conversion efficiency (PCE) of carbon-based CsPbI2Br PSCs is still no more than 16%, because of the defects in CsPbI2Br or at the interface with the electron transport layer (ETL), as well as the energy level mismatch, which lead to the loss of energy, thus limiting PCE values. Herein, a series of cadmium halides are introduced, including CdCl2, CdBr2 and CdI2 for dual direction thermal diffusion treatment. Some Cd2+ ions thermally diffuse downward to passivate the defects inside or on the surface of SnO2 ETL. Meanwhile, the energy level structure of SnO2 ETL is adjusted, which is in favor of the transfer of electron carriers and blocking holes. On the other hand, part of Cd2+ and Cl ions thermally diffuse upward into the CsPbI2Br lattice to passivate crystal defects. Through dual direction thermal diffusion treatment by CdCl2, CdI2 and CdBr2, the performance of devices has been significantly improved, and their PCE has been increased from 13.01% of the original device to 14.47%, 14.31%, and 13.46%, respectively. According to existing reports, 14.47% is one of the highest PCE of carbon-based CsPbI2Br PSCs with SnO2 ETLs.  相似文献   

8.
In this work, a SnO2/ZnO bilayered electron transporting layer (ETL) aimed to achieve low energy loss and large open‐circuit voltage (Voc) for high‐efficiency all‐inorganic CsPbI2Br perovskite solar cells (PVSCs) is introduced. The high‐quality CsPbI2Br film with regular crystal grains and full coverage can be realized on the SnO2/ZnO surface. The higher‐lying conduction band minimum of ZnO facilitates desirable cascade energy level alignment between the perovskite and SnO2/ZnO bilayered ETL with superior electron extraction capability, resulting in a suppressed interfacial trap‐assisted recombination with lower charge recombination rate and greater charge extraction efficiency. The as‐optimized all‐inorganic PVSC delivers a high Voc of 1.23 V and power conversion efficiency (PCE) of 14.6%, which is one of the best efficiencies reported for the Cs‐based all‐inorganic PVSCs to date. More importantly, decent thermal stability with only 20% PCE loss is demonstrated for the SnO2/ZnO‐based CsPbI2Br PVSCs after being heated at 85 °C for 300 h. These findings provide important interface design insights that will be crucial to further improve the efficiency of all‐inorganic PVSCs in the future.  相似文献   

9.
All‐inorganic cesium lead iodide perovskites (CsPbI3) are promising wide‐bandgap materials for use in the perovskite/silicon tandem solar cells, but they easily undergo a phase transition from a cubic black phase to an orthorhombic yellow phase under ambient conditions. It is shown that this phase transition is triggered by moisture that causes distortion of the corner‐sharing octahedral framework ([PbI6]4?). Here, a novel strategy to suppress the octahedral tilting of [PbI6]4? units in cubic CsPbI3 by systematically controlling the steric hindrance of surface organic terminal groups is provided. This steric hindrance effectively prevents the lattice distortion and thus increases the energy barrier for phase transition. This mechanism is verified by X‐ray diffraction measurements and density functional theory calculations. Meanwhile, the formation of an organic capping layer can also passivate the surface electronic trap states of perovskite absorber. These modifications contribute to a stable power conversion efficiency (PCE) of 13.2% for the inverted planar perovskite solar cells (PSCs), which is the highest efficiency achieved by the inverted‐structure inorganic PSCs. More importantly, the optimized devices retained 85% of their initial PCE after aging under ambient conditions for 30 days.  相似文献   

10.
A new hole transporting material (HTM) named DMZ is synthesized and employed as a dopant‐free HTM in inverted planar perovskite solar cells (PSCs). Systematic studies demonstrate that the thickness of the hole transporting layer can effectively enhance the morphology and crystallinity of the perovskite layer, leading to low series resistance and less defects in the crystal. As a result, the champion power conversion efficiency (PCE) of 18.61% with JSC = 22.62 mA cm?2, VOC = 1.02 V, and FF = 81.05% (an average one is 17.62%) is achieved with a thickness of ≈13 nm of DMZ (2 mg mL?1) under standard global AM 1.5 illumination, which is ≈1.5 times higher than that of devices based on poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS). More importantly, the devices based on DMZ exhibit a much better stability (90% of maximum PCE retained after more than 556 h in air (relative humidity ≈ 45%–50%) without any encapsulation) than that of devices based on PEDOT:PSS (only 36% of initial PCE retained after 77 h in same conditions). Therefore, the cost‐effective and facile material named DMZ offers an appealing alternative to PEDOT:PSS or polytriarylamine for highly efficient and stable inverted planar PSCs.  相似文献   

11.
Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.  相似文献   

12.
The prevailing perovskite solar cells (PSCs) employ hybrid organic–inorganic halide perovskites as light absorbers, but these materials exhibit relatively poor environmental stability, which potentially hinders the practical deployment of PSCs. One important strategy to address this issue is replacing the volatile and hygroscopic organic cations with inorganic cesium cations in the crystal structure, forming all-inorganic halide perovskites. In this context, CsPbI3 perovskite is drawing phenomenal attention, primarily because it exhibits an ideal bandgap of 1.7 eV for the use in tandem solar cells, and it shows significantly enhanced thermal stability that is the key to the long-term device operation. Within only half a decade, the power conversion efficiency (PCE) of CsPbI3 PSCs has ramped beyond 20%, which has been driven by inventions of numerous processing methods for high-quality CsPbI3 perovskite thin films. These methods are broadly classified into three categories: vapor deposition, nanocrystals assembly, and solution deposition. Herein we present a systematic review on these methods and related materials sciences. In particular, we comprehensively discuss the dimethylammonium-additive-based solution deposition, which has resulted into the best-performing CsPbI3 PSCs. We also present the challenges and prospects on future research towards the realization of the full potential of CsPbI3 PSCs.  相似文献   

13.
All-inorganic perovskite CsPbI3 contains no volatile organic components and is a thermally stable photoactive material for wide-bandgap perovskite solar cells (PSCs); however, CsPbI3 readily undergoes undesirable phase transitions due to the hygroscopic nature of the ionic dopants used in commonly used hole transport materials. In the current study, the popular donor material PM6 in organic solar cells is used as a hole transport layer (HTL). The benzodithiophene-based backbone-conjugated polymer requires no dopant and leads to a higher power conversion efficiency (PCE) than 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-OMeTAD). Moreover, PM6 also shows priorities in hole mobility, hydrophobicity, cascade energy level alignment, and even defect passivation of perovskite films. With PM6 as the dopant-free HTL, the PSCs achieve a champion PCE of 18.27% with a competitive fill factor of 82.8%. Notably, the present PCE is based on the dopant-free HTL in CsPbI3 PSCs reported thus far. The PSCs with PM6 as the HTL retain over 90% of the initial PCE stored in a glovebox filled with N2 for 3000 h. In contrast, the PSCs with Spiro-OMeTAD as the HTL maintain ≈80% of the initial PCE under the same conditions.  相似文献   

14.
Designing air-stable perovskite solar cells (PSCs) is a recent trend in low-cost photovoltaic technology. Metal oxide-based electron transporting layers (ETLs) and hole transporting layers (HTLs) have attracted tremendous attention in PSCs, because of their excellent air stability, high electron mobility, and optical transparency. Herein, we report a co-precipitation method for the synthesis of p-type nanoporous nickel oxide (np-NiOx) thin films as the HTL for inverted (p-i-n) PSCs. The best-performing p-i-n PSC having np-NiOx HTL, (FAPbI3)0.85(MAPbBr3)0.15 (herein FAPbI3 stands for formamidinium lead iodide and MAPbBr3 stands for methylammonium lead bromide) perovskite and phenyl-C61-butyric acid methyl ester (PCBM)/ZnO ETL exhibited a 19.10% (±1%) power conversion efficiency (PCE) with a current density (JSC) of 22.76?mA?cm?2, open circuit voltage (VOC) of 1.076?V and fill factor (FF) of 0.78 under 1?sun (100?mW?cm?2). Interestingly, the developed p-i-n PSCs based on p-type NiOx and n-type ZnO could retain >80% efficiency after 160?days, which is much higher than conventional PEDOT:PSS HTL-based PSCs. Our findings provide air-stable perovskite solar cells with high efficiency.  相似文献   

15.
Wide-bandgap perovskite solar cells (PSCs) have attracted a lot of attention due to their application in tandem solar cells. However, the open-circuit voltage (VOC) of wide-bandgap PSCs is dramatically limited by high defect density existing at the interface and bulk of the perovskite film. Here, an anti-solvent optimized adduct to control perovskite crystallization strategy that reduces nonradiative recombination and minimizes VOC deficit is proposed. Specifically, an organic solvent with similar dipole moment, isopropanol (IPA) is added into ethyl acetate (EA) anti-solvent, which is beneficial to form PbI2 adducts with better crystalline orientation and direct formation of α-phase perovskite. As a result, EA-IPA (7-1) based 1.67 eV PSCs deliver a power conversion efficiency of 20.06% and a VOC of 1.255 V, which is one of the remarkable values for wide-bandgap around 1.67 eV. The findings provide an effective strategy for controlling crystallization to reduce defect density in PSCs.  相似文献   

16.
The charge recombination resulting from bulk defects and interfacial energy level mismatch hinders the improvement of the power conversion efficiency (PCE) and stability of carbon-based inorganic perovskite solar cells (C-IPSCs). Herein, a series of small molecules including ethylenediaminetetraacetic acid (EDTA) and its derivatives (EDTA-Na and EDTA-K) are studied to functionalize the zinc oxide (ZnO) interlayers at the SnO2/CsPbI2Br buried interface to boost the photovoltaic performance of low-temperature C-IPSCs. This strategy can simultaneously passivate defects in ZnO and perovskite films, adjust interfacial energy level alignment, and release interfacial tensile stress, thereby improving interfacial contact, inhibiting ion migration, alleviating charge recombination, and promoting electron transport. As a result, a maximum PCE of 13.94% with a negligible hysteresis effect is obtained, which is one of the best results reported for low-temperature CsPbI2Br C-IPSCs so far. Moreover, the optimized devices without encapsulation demonstrate greatly improved operational stability.  相似文献   

17.
1.5–1.6 eV bandgap Pb-based perovskite solar cells (PSCs) with 30–31% theoretical efficiency limit by the Shockley–Queisser model achieve 21–24% power conversion efficiencies (PCEs). However, the best PCEs of reported ideal-bandgap (1.3–1.4 eV) Sn–Pb PSCs with a higher 33% theoretical efficiency limit are <18%, mainly because of their large open-circuit voltage (Voc) deficits (>0.4 V). Herein, it is found that the addition of guanidinium bromide (GABr) can significantly improve the structural and photoelectric characteristics of ideal-bandgap (≈1.34 eV) Sn–Pb perovskite films. GABr introduced in the perovskite films can efficiently reduce the high defect density caused by Sn2+ oxidation in the perovskite, which is favorable for facilitating hole transport, decreasing charge-carrier recombination, and reducing the Voc deficit. Therefore, the best PCE of 20.63% with a certificated efficiency of 19.8% is achieved in 1.35 eV PSCs, along with a record small Voc deficit of 0.33 V, which is the highest PCE among all values reported to date for ideal-bandgap Sn–Pb PSCs. Moreover, the GABr-modified PSCs exhibit significantly improved environmental and thermal stability. This work represents a noteworthy step toward the fabrication of efficient and stable ideal-bandgap PSCs.  相似文献   

18.
Perovskite solar cells (PSCs) have rapidly developed and achieved power conversion efficiencies of over 20% with diverse technical routes. Particularly, planar-structured PSCs can be fabricated with low-temperature (≤150 °C) solution-based processes, which is energy efficient and compatible with flexible substrates. Here, the efficiency and stability of planar PSCs are enhanced by improving the interface contact between the SnO2 electron-transport layer (ETL) and the perovskite layer. A biological polymer (heparin potassium, HP) is introduced to regulate the arrangement of SnO2 nanocrystals, and induce vertically aligned crystal growth of perovskites on top. Correspondingly, SnO2–HP-based devices can demonstrate an average efficiency of 23.03% on rigid substrates with enhanced open-circuit voltage (VOC) of 1.162 V and high reproducibility. Attributed to the strengthened interface binding, the devices obtain high operational stability, retaining 97% of their initial performance (power conversion efficiency, PCE > 22%) after 1000 h operation at their maximum power point under 1 sun illumination. Besides, the HP-modified SnO2 ETL exhibits promising potential for application in flexible and large-area devices.  相似文献   

19.
A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt‐5,5′‐2,2′‐bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2, while PDCBT with deeper‐lying highest occupied molecular orbital (HOMO) level provides a better energy‐level matching at the anode, leading to a significant enhancement in open‐circuit voltage (Voc) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high‐quality all‐inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2Br films. Therefore, the optimized CsPbI2Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all‐inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h.  相似文献   

20.
Wide-bandgap perovskite solar cells (PSCs) are attracting increasing attention because they play an irreplaceable role in tandem solar cells. Nevertheless, wide-bandgap PSCs suffer large open-circuit voltage (VOC) loss and instability due to photoinduced halide segregation, significantly limiting their application. Herein, a bile salt (sodium glycochenodeoxycholate, GCDC, a natural product), is used to construct an ultrathin self-assembled ionic insulating layer firmly coating the perovskite film, which suppresses halide phase separation, reduces VOC loss, and improves device stability. As a result, 1.68 eV wide-bandgap devices with an inverted structure deliver a VOC of 1.20 V with an efficiency of 20.38%. The unencapsulated GCDC-treated devices are considerably more stable than the control devices, retaining 92% of their initial efficiency after 1392 h storage under ambient conditions and retaining 93% after heating at 65 °C for 1128 h in an N2 atmosphere. This strategy of mitigating ion migration via anchoring a nonconductive layer provides a simple approach to achieving efficient and stable wide-bandgap PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号