首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper focuses on the problem of active fault‐tolerant control for switched systems with time delay. By utilizing the fault diagnosis observer, an adaptive fault estimate algorithm is proposed, which can estimate the fault signal fast and exactly. Meanwhile, a delay‐dependent criterion is obtained with the purpose of reducing the conservatism of the adaptive observer design. Based on the fault estimation information, an observer‐based fault‐tolerant controller is designed to guarantee the stability of the closed‐loop system. In terms of linear matrix inequality, sufficient conditions are derived for the existence of the adaptive observer and fault‐tolerant controller. Finally, a numerical example is included to illustrate the efficiency of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The problem of active fault‐tolerant control with reconfiguration mechanism for uncertain linear systems with external disturbances is addressed applying the supervisory control approach. A key feature of the proposed approach is establishment of a set of conditions providing mutual performance in the sense of taking into account the interaction of the fault detection, isolation, and accommodation subsystems in order to achieve global fault‐tolerance performance with guaranteed global stability. The efficiency of the approach is demonstrated in an example of computer simulation for a flight system benchmark. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates design of an adaptive fixed-time fault-tolerant decentralized controller for a class of uncertain multi-input multi-output (MIMO) switched large-scale non-strict interconnected systems under arbitrary switching subject to unknown control directions, quantized nonlinear inputs, actuator failures unknown external disturbances, and unmodeled dynamics. In addition to interconnected terms, time-varying delayed interconnected terms have been considered in the system model which makes it more general than previous works in the literature. The proposed controller can handle switched systems with unknown switching signal and different types of input nonlinearities including, saturation, backlash, and dead-zone. The singularity problem in designing the fixed time controller has been solved. The quantizer and actuators fault parameters are assumed to be unknown. The Razumikhin lemma has been used to deal with the delayed interconnected terms. To cope with the system unknown dynamics, neural networks (NNs) have been applied and by updating the maximum norms of the networks weight vectors the computational load has been reduced. The explosion of complexity occurring in the traditional back-stepping technique has been avoided by applying dynamic surface control (DSC). Finally, by defining an appropriate common Lyapunov function (CLF), fixed-time convergence of system outputs and the closed-loop system stability have been established. The effectiveness of the proposed controller has been shown via simulation study.  相似文献   

4.
针对三相永磁同步电机驱动系统中的位置/速度传感器和电流传感器开路故障问题,提出基于滑模观测器的故障检测与系统容错方法。通过建立系统的滑模观测器模型,获得系统输出电流与速度信号的预测值,利用预测值与系统实际输出值的残差分析并检测系统的传感器故障,在故障被检测的情况下,针对电流传感器,提出了一种V/f控制算法以实现故障情况下系统的平滑切换;针对位置/速度传感器,提出一种反电动势直接计算法以实现故障情况下系统的平滑切换,实验结果表明:所提出的算法能够在线检测故障并实现故障前后系统平滑切换与容错控制。  相似文献   

5.
一类切换系统的连续分段Lyapunov函数   总被引:4,自引:1,他引:4  
切换系统是一类重要的混合动态系统,其稳定性不但与子系统是否稳定有关,还与切换控制函数有关。本文分析了在特定切换控制函数作用下,切换系统的稳定性,用连续分段Lyapunov函数讨论了切换系统稳定的充分条件。它不但适用于线性切换系统,对非线性系统也适用。连续分段Lyapunov函数的条件比公共Lyapunov函数和多Lyapunov函数的条件容易满足,能够分析含有不稳定子系统的切换系统的稳定性。最后给出两个例子说明了连续分段Lyapunov函数方法的有效性。  相似文献   

6.
This paper is concerned with the fault tolerant synchronization problem for a class of complex interconnected neural networks against sensor faults. As sensor faults may lead to performance degradation or even instability of the whole network, fault tolerant control laws are designed to guarantee the controlled synchronization of the complex interconnected neural networks. On the basis of Lyapunov stability theory and adaptive schemes, three kinds of fault tolerant control laws are designed on the basis of linear matrix inequality technique. One is the passive fault tolerant control law, the other two are adaptive fault tolerant control laws. The latter two methods use the adaptive adjusting mechanism of the coupling coefficients to ensure the synchronization of the networks in the presence of sensor faults. Simulation results are given to verify the effectiveness of the proposed methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
交直流并联输电系统实用动态安全域研究   总被引:4,自引:2,他引:4  
通过改变发电机节点有功功率、电压幅值以及负荷节点有功功率、无功功率可得到满足暂态功角稳定性的临界点.在给定事故、直流功率及控制方式下,交直流并联输电系统的保证暂态功角稳定性的实用动态安全域边界,由描述各节点有功功率及无功功率或电压幅值(对应于发电机节点)上、下限的垂直于坐标轴的平面和极少数几个分别对应于不同失稳模式的临界点的超平面(简称为临界面)围成.在相同故障、失稳模式、直流控制方式下,分别对应于不同直流功率的临界面间具有近似平行性,并且它们的空间几何距离与直流功率的改变量成正比.因此直流功率可以作为临界面方程的一个有功功率变量.通过观察拟合得到的临界面方程系数可以看出,临界群中各节点的有功功率、发电机节点的电压幅值的变化将显著影响系统的暂态功角稳定性,而负荷节点的无功功率变化对系统的暂态功角稳定性影响很小.  相似文献   

8.
In this paper, we investigate the stability and stabilization problem for discrete‐time switched systems. We consider a probabilistic case where the system is switched among different subsystems, and the probability of each subsystem being active is defined as its occurrence probability. The relationship between the developed model of the switched system and the Markovian jump system is analyzed. For a switched system with a known subsystem occurrence probabilities, we give a stochastic stability criterion in terms of a linear matrix inequality. Then, we extend the results to a more practical case where the subsystem occurrence probabilities of switching are known to be constant, but their specific values are only known with some uncertainty. A new iterative approach is employed to choose the switching law between the subsystems. For unstable switched systems, mode‐dependent state feedback and static output feedback controllers are developed to achieve the stabilization objective. Finally, several simulation examples are presented to show the efficacy of the proposed criteria and methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
双凸极永磁电机故障分析与容错控制策略   总被引:1,自引:0,他引:1  
电机驱动系统的可靠性问题在实际应用中得到了相关领域学者越来越广泛地关注.在对容错电机的基本结构特点进行分析的基础上,针对现有容错电机的不足,对双凸极永磁(DSPM)电机的容错性能进行了研究.DSPM电机克服了开关磁阻电机和转子永磁型容错电机的各自不足,具有可靠性高和功率密度高等优点.为提高DSPM电机缺相运行特性,提出了一种容错控制策略,建立了DSPM电机驱动系统的联合仿真模型,并将其应用于容错性能分析.仿真和实验结果表明,DSPM电机是一种新型容错电机,具有较强的带故障运行能力.本文为新型定子永磁型容错电机的研究打下了基础.  相似文献   

10.
This paper addresses a study of fault‐tolerant control (FTC) for wireless networked control systems (WNCSs) in industrial automatic processes. The WNCSs is composed of many subsystems, which operate with different sampling cycles. In order to meet the real‐time requirements and ensure a deterministic data transmission, the time division multiple access (TDMA) mechanism is adopted in WNCSs. The data in WNCSs are transmitted following a TDMA‐based scheduler. According to the periodicity, WNCSs integrated with the scheduler is first formulated as discrete linear time periodic systems (LTPSs). Afterwards, a fault estimation method for LTPSs is developed under a H performance specification with a regional pole constraint. With the achieved state observer and fault estimator, an FTC strategy for LTPSs is explored. Finally, the proposed methods are verified on a physical experimental WiNC platform. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
DC/DC变换器的切换仿射线性系统模型及控制   总被引:2,自引:0,他引:2  
DC/DC变换器控制的主要难点之一在于它所特有的混杂特性。从切换线性系统理论及无源系统理论角度提出了DC/DC变换器建模和调节问题的新方法。首先建立基本DC/DC变换器Buck、Boost和Buck-Boost的切换仿射线性系统模型,然后根据凸组合稳定条件及无源性理论,选取电感和电容的储能函数为各切换子系统的共同Lyapunov函数,据此划分各子系统的运行区域,构造切换律保证系统在任意切换下的二次稳定,最后进行了仿真分析和验证。所提出方法不仅适用于开关变换电路的控制,亦适用于其他具有端口受控哈密顿结构的切换系统的控制。  相似文献   

12.
In this paper, an actuator fault‐tolerant control (FTC) strategy based on set separation is presented. The proposed scheme employs a standard configuration consisting of a bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with a distinctive behaviour when a estimator matches the current fault situation of the plant. With this information from each observer, a fault diagnosis and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate stabilising controller from a bank of precomputed control laws, each of them related to one of the considered fault models. The control law consists of a reference feedforward term and a feedback gain multiplying the state estimate provided by the matching observer. A novel feature of the proposed scheme resides in the decision criteria of the FDI, which is based on the computation of sets towards which the output estimation errors related to each fault scenario and for each control configuration converge. Conditions for the design of the FDI module and for fault tolerant closed‐loop stability are given, and the effectiveness of the approach is illustrated by means of a numerical example. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In recent years, control system reliability has received much attention with an increase of situations where computer‐controlled systems such as robot control systems are used. In order to improve reliability, control systems need to have abilities to detect a fault (fault detection) and maintain the stability and the control performance (fault tolerance). This paper deals with the strain gauge sensor fault of a flexible arm robot. In order to achieve a fault‐tolerant control system, the effect of the fault is identified as dual Youla parameter by regarding the estimation error of the faulty sensor signal as the faulty plant output. Moreover, Youla parameter is designed so as to suppress the effect of dual Youla parameter. Youla parameter is implemented in GIMC (Generalized Internal Model Control) structure proposed by Zhou. Since GIMC structure includes a conditional feedback, it is suitable for achieving a fault‐tolerant control system. The effectiveness of the proposed fault‐tolerant control system is confirmed by experiments. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 168(3): 48–58, 2009; Published online in Wiley InterScience ( www. interscience.wiley.com ). DOI 10.1002/eej.20830  相似文献   

14.
The paper deals with the design of an active fault‐tolerant control strategy based on the supervisory control approach technique for linear time invariant MIMO systems affected by disturbances, measurement noise, and faults. From a bank of Luenberger observers that plays the role of a fault detection and isolation scheme, the supervisory algorithm aims at selecting the suitable fault‐tolerant controller by means of a hysteresis‐based switching mechanism. Based on dwell‐time conditions, Lyapunov global exponential stability is addressed, and it is shown how transient behaviors due to the inherent interactions between fault detection and isolation, fault‐tolerant control, and the reconfiguration mechanism can be improved. The main advantage with respect to existing solutions of open literature is relative to a simple parameterization of all controllers (possibly having different state dimensions, integral action, and/or unstable poles) in order to cope with bumps and undesirable transients when (possible multiple) switches occur. Moreover, it is shown that it is possible to improve (reduce) the dwell‐time value in some cases. The efficiency of the approach is demonstrated on the academic highly maneuverable technology benchmark. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
新型定子永磁式容错电机的工作原理和性能分析   总被引:1,自引:0,他引:1  
为满足电机驱动系统在多种高可靠性领域的应用,提出一种新型的定子永磁式容错电机结构--双凸极容错(doubly salient fault tolerant,DSFT)电机。DSFT电机在结构上集中了开关磁阻电机和转子永磁式容错电机的特点,具有结构简单、可靠性高、功率密度高等优点。以一台四相8/10极DSFT电机为例,分析其结构特点、容错齿作用和运行原理。在此基础上,研究DSFT电机在正常和短路时的磁场特性,计算磁链、自感、互感等电磁特性,从理论上分析DSFT电机的容错性能。运用电路、磁路瞬态联合仿真的方法,建立DSFT电机驱动系统的场路耦合分析模型,分别对电机在正常和缺相运行状态下的转矩输出性能进行计算分析。研究结果表明,DSFT电机相与相间的独立性好,具有较强的带故障运行能力,适用于一些工作环境恶劣且要求高可靠性、高能量密度的场合。  相似文献   

16.
This article solves the fixed-time force/position control problem for constrained manipulators in the presence of input saturation and uncertain dynamics. Under the fixed-time stability theory, a novel fixed-time auxiliary dynamic system (ADS) is first presented to compensate for the effects of input saturation nonlinearity. System uncertainties are estimated by using radial basis function neural networks (RBF NNs) and only need to tune one neural parameter online. In addition, with a fixed-time sliding mode surface and the proposed fixed-time ADS, a novel fixed-time adaptive neural force/position controller is designed which can not only ensure the fixed-time stability of the position tracking error but also enable the manipulator to track the desired force trajectory. By using the Lyapunov method, the boundedness of all signals in the closed-loop system is proved. Finally, the effectiveness of the proposed method is demonstrated by comparative simulation works.  相似文献   

17.
This paper addresses the issue of fault estimation and accommodation for a discrete‐time switched system with actuator faults. Here, we assume that the sojourn probabilities are known a priori. By using the reduced‐order observer method, the sojourn probability approach, and the Lyapunov technique, a fault estimation algorithm is obtained for the considered system. The main objective of this work is to design a dynamic output feedback fault‐tolerant controller based on the obtained fault estimation information such that the closed‐loop discrete‐time switched system with available sojourn probabilities is robustly mean‐square stable and satisfies a prescribed mixed and passivity disturbance attenuation level in the presence of actuator faults. More precisely, a dynamic output feedback fault‐tolerant controller is established in terms of linear matrix inequalities. Finally, numerical examples are provided to illustrate the usefulness and effectiveness of the proposed design technique.  相似文献   

18.
This paper investigates the problem of adaptive output‐feedback neural network (NN) control for a class of switched pure‐feedback uncertain nonlinear systems. A switched observer is first constructed to estimate the unmeasurable states. Next, with the help of an NN to approximate the unknown nonlinear terms, a switched small‐gain technique‐based adaptive output‐feedback NN control scheme is developed by exploiting the backstepping recursive design scheme, input‐to‐state stability analysis, the common Lyapunov function method, and the average dwell time (ADT) method. In the recursive design, the difficulty of constructing an overall Lyapunov function for the switched closed‐loop system is dealt with by decomposing the switched closed‐loop system into two interconnected switched systems and constructing two Lyapunov functions for two interconnected switched systems, respectively. The proposed controllers for individual subsystems guarantee that all signals in the closed‐loop system are semiglobally, uniformly, and ultimately bounded under a class of switching signals with ADT, and finally, two examples illustrate the effectiveness of theoretical results, which include a switched RLC circuit system.  相似文献   

19.
In this paper, the problem of fault‐tolerant insensitive control is addressed for a class of linear time‐invariant continuous‐time systems against bounded time‐varying actuator faults and controller gain variations. Adaptive mechanisms are developed to adjust controller gains in order to compensate for the detrimental effects of partial loss of control effectiveness and bias‐actuator faults. Variations of controller gains arise from time‐varying and bounded perturbations that are supposed to always exist in adaptive mechanisms. Based on the disturbed outputs of adaptive mechanisms, three different adaptive control strategies are constructed to achieve bounded stability results of the closed‐loop adaptive fault‐tolerant control systems in the presence of actuator faults and controller gain variations. Furthermore, comparisons of convergence boundaries of states and limits of control inputs among adaptive strategies are developed in this paper. The efficiency of the proposed adaptive control strategies and their comparisons are demonstrated by a rocket fairing structural‐acoustic model.  相似文献   

20.
In this paper, we present a new fault‐tolerant control system for a class of nonlinear systems with input constraints. Because of many important factors that stabilize a nonlinear model predictive controller, it can be used as a powerful controller in the event of fault occurrence. So, the reconfigurable controller is designed based on the quasi‐infinite model predictive control (QIMPC) approach as a fault‐tolerant approach. On the other hand, a fault detection and diagnosis (FDD) system is designed based on the multiple model method. The bank of extended Kalman filters (EKFs) is used to detect the predefined actuator fault and estimate the unknown parameters of a fault. When a fault is detected, the proposed FDD information is used to correct the model of the faulty system recursively and reconfigure the controller. Delay on FDD decision may lead to performance degradation or even instability for some systems. The timely proposed FDD approach will preserve stability. Moreover, a framework is presented to ensure stability when a fault occurs. The effectiveness of this method is demonstrated, in comparison with conventional nonlinear model predictive control, by two practical examples. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号