首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Image steganography based on intelligent devices is one of the effective routes for safely and quickly transferring secret information. However, optical image steganography has attracted far less attention than digital one due to the state-of-the-art technology limitations of high-resolution optical imaging in integrated devices. Optical metasurfaces, composed of ultrathin subwavelength meta-atoms, are extensively considered for flat optical-imaging nano-components with high-resolutions as competitive candidates for next-generation miniaturized devices. Here, multiplex imaging metasurfaces composed of single nanorods are proposed under a detailed strategy to realize optical image steganography. The simulation and experimental results demonstrate that an optical steganographic metasurface can simultaneously transfer independent secret image information to two receivers with special keys, without raising suspicions for the general public under the cloak of a cover image. The proposed optical steganographic strategy by metasurfaces can arbitrarily distribute a continuous grayscale image together with a black-and-white image in separate channels, implying the distinguishing feature of high-density information capacity for integration and miniaturization in optical meta-devices.  相似文献   

2.
3.
Metasurfaces, 2D artificial arrays of subwavelength elements, have attracted great interest from the optical scientific community in recent years because they provide versatile possibilities for the manipulation of optical waves and promise an effective way for miniaturization and integration of optical devices. In the past decade, the main efforts were focused on the realization of single‐dimensional (amplitude, frequency, polarization, or phase) manipulation of optical waves. Compared to the metasurfaces with single‐dimensional manipulation, metasurfaces with multidimensional manipulation of optical waves show significant advantages in many practical application areas, such as optical holograms, sub‐diffraction imaging, and the design of integrated multifunctional optical devices. Nowadays, with the rapid development of nanofabrication techniques, the research of metasurfaces has been inevitably developed from single‐dimensional manipulation toward multidimensional manipulation of optical waves, which greatly boosts the application of metasurfaces and further paves the way for arbitrary design of optical devices. Herein, the recent advances in metasurfaces are briefly reviewed and classified from the viewpoint of different dimensional manipulations of optical waves. Single‐dimensional manipulation and 2D manipulation of optical waves with metasurfaces are discussed systematically. In conclusion, an outlook and perspectives on the challenges and future prospects in these rapidly growing research areas are provided.  相似文献   

4.
5.
光互连是突破传统微电子IC性能瓶颈的重要技术手段,对推进"后摩尔时代"微电子技术的发展和高性能计算技术的实现具有关键性意义。本文在归纳总结不同层次光互连结构特点的基础上,对片上光互连(on-chip or intra-chip optical interconnects)所涉及的若干种无源光子集成器件的设计制备及性能特点进行了分析介绍,这些器件包括SOI亚波长光子线波导、SOI光子晶体波导、MMI分束/合束器、微环/微盘谐振腔滤波器、光子晶体微腔耦合滤波器、光子晶体反射镜等,是硅基片上光互连的基本构成单元。本文对这些关键性光子集成器件的国内最新研究进展进行了报道。  相似文献   

6.
7.
Surface modification of nonlinear optical materials (NOMs) is widely applied to fabricate diverse photonic devices, such as frequency combs, modulators, and all‐optical switches. In this work, a double‐layer nanostructure with heterogeneous nanoparticles (NPs) is proposed to achieve enhanced third‐order optical nonlinearity of NOMs. The mechanism of modified optical nonlinearity is elucidated to be the scattering‐induced energy transfer between adjacent NPs layers. Based on the LiNbO3 platform, as a typical example, double layers of embedded Cu and Ag NPs are synthesized by sequential ion implantation, demonstrating twofold magnitude of near‐infrared enhancement factor and modulation depth in comparison with a single layer of Cu NPs. With the elastic collision model and thermolysis theory being considered, the shift of the localized surface plasmon resonance (LSPR) peak reveals the formation mechanism of the double‐layer nanostructure. Utilizing the enhanced optical nonlinearity of LiNbO3 as modulators, a Q‐switched mode‐locked waveguide laser at 1 µm is achieved with shorter pulse duration. It suggests potential applications to improve the performance of nonlinear photonic devices by using double‐layer metallic nanostructures.  相似文献   

8.
Metasurfaces are used to enable acoustic orbital angular momentum (a‐OAM)‐based multiplexing in real‐time, postprocess‐free, and sensor‐scanning‐free fashions to improve the bandwidth of acoustic communication, with intrinsic compatibility and expandability to cooperate with other multiplexing schemes. The metasurface‐based communication relying on encoding information onto twisted beams is numerically and experimentally demonstrated by realizing real‐time picture transfer, which differs from existing static data transfer by encoding data onto OAM states. With the advantages of real‐time transmission, passive and instantaneous data decoding, vanishingly low loss, compact size, and high transmitting accuracy, the study of a‐OAM‐based information transfer with metasurfaces offers new route to boost the capacity of acoustic communication and great potential to profoundly advance relevant fields.  相似文献   

9.

如何在低阈值小尺度(毫瓦或皮焦量级、微米以下)情况下激发非线性光学效应是近年来光学领域研究的重要课题。该研究最直接的应用需求就是光子集成芯片,这是未来实现超高速、大容量信息网络体系的基础。光子晶体具有类似于半导体能带的光子禁带(PBG),被誉为“光子半导体”,为人们提供了一种新颖而又实用的操纵光子的物理手段,使低阈值、可集成非线性效应产生成为可能。越来越多的非线性效应在光子晶体中已经被发现,例如光子晶体慢光、带隙孤子、电磁感应透明、二次谐波产生、光学双稳态等,本文将着重对可用于光子集成器件开发的光子晶体非线性效应研究领域的一些主要成果和进展进行总结,介绍其相关应用并对光子晶体非线性效应研究作出展望。

  相似文献   

10.
冯睿  田耀恺  刘亚龙  孙芳魁  曹永印  丁卫强 《光电工程》2023,50(9):230172-1-230172-11

光学模拟计算通过在空间域直接对光学输入进行调控,避免了各种应用场景中光电之间的转换。因此在图像处理等应用领域成为人们研究的重点。本文用拓扑优化方法设计了一类利用格林函数法的偏振复用光学模拟计算超表面结构。在不同线偏振光入射下,该拓扑优化超表面可以独立地对透射光场的振幅和相位进行调控。实现了在正交偏振态下,分别呈现明场成像与一维二阶微分运算,以及偏振控制微分方向的复用微分系统。这种偏振复用的设计可以在更多的光学计算应用场景中发挥重要作用。

  相似文献   

11.
12.
Optical metamaterials offer the tantalizing possibility of creating extraordinary optical properties through the careful design and arrangement of subwavelength structural units. Gyroid‐structured optical metamaterials possess a chiral, cubic, and triply periodic bulk morphology that exhibits a redshifted effective plasma frequency. They also exhibit a strong linear dichroism, the origin of which is not yet understood. Here, the interaction of light with gold gyroid optical metamaterials is studied and a strong correlation between the surface morphology and its linear dichroism is found. The termination of the gyroid surface breaks the cubic symmetry of the bulk lattice and gives rise to the observed wavelength‐ and polarization‐dependent reflection. The results show that light couples into both localized and propagating plasmon modes associated with anisotropic surface protrusions and the gaps between such protrusions. The localized surface modes give rise to the anisotropic optical response, creating the linear dichroism. Simulated reflection spectra are highly sensitive to minute details of these surface terminations, down to the nanometer level, and can be understood with analogy to the optical properties of a 2D anisotropic metasurface atop a 3D isotropic metamaterial. This pronounced sensitivity to the subwavelength surface morphology has significant consequences for both the design and application of optical metamaterials.  相似文献   

13.
The optical properties of a graphene based annular photonic crystal (APC) are theoretically investigated. The proposed structure is a hollow core cylindrical shell consists of the alternate dielectric layer and graphene monolayer immersed in free space. In order to study the photonic band structures of the APC, we obtained the optical spectra of the graphene based APC by employing the transfer matrix method in the cylindrical waves for both TE and TM polarizations. In this work we study the effect of different geometrical and optical parameters of the structure on the low loss high reflectance graphene induced band gap. It is found that the graphene induced band gap which appeared in the frequency below 10 THz is polarization independent and remains almost invariant with the change in the period number, the radius of the inner core region and the refractive indices of the inner core region and the surrounding medium. However, its width increases by increasing the azimuthal mode number and the chemical potential of the graphene monolayers and decreases by increasing the refractive index and the thickness of the dielectric layers.  相似文献   

14.
Optical nonlinearity in 2D materials excited by spatial Gaussian laser beam is a novel and peculiar optical phenomenon, which exhibits many novel and interesting applications in optical nonlinear devices. Passive photonic devices, such as optical switches, optical logical gates, photonic diodes, and optical modulators, are the key compositions in the future all‐optical signal‐processing technologies. Passive photonic devices using 2D materials to achieve the device functionality have attracted widespread concern in the past decade. In this Review, an overview of the spatial self‐phase modulation (SSPM) in 2D materials is summarized, including the operating mechanism, optical parameter measurement, and tuning for 2D materials, and applications in photonic devices. Moreover, some current challenges are also proposed to solve, and some possible applications of SSPM method are predicted for the future. Therefore, it is anticipated that this summary can contribute to the application of 2D material‐based spatial effect in all‐optical signal‐processing technologies.  相似文献   

15.
Basing on the self-collimation effect of photonic crystals, one-to-two beam splitter, beam bend and one-to-three beam splitter are, respectively, designed by introducing a different line defect along the same direction. From the equal-frequency contour plot which is calculated by the plane wave expansion method, we obtain the frequency and the propagate direction of the self-collimated beam. The self-collimated beam propagation in photonic crystals with different line defects is simulated by the two-dimensional finite-difference time-domain method with perfectly matched layer absorbing boundary conditions. The simulation results show that one-to-two beam splitter, beam bend and one-to-three beam splitter can be realized by appropriately arranging the line defect along the proper direction. Such devices can greatly enhance photonic crystals for use in high-density optical integrated circuits.  相似文献   

16.
The characteristics of a double teeth-shaped plasmonic optical switch are analyzed. Based on the metal–insulator–metal waveguide consisting of double rectangular teeth, a nanoscale liquid crystal optical switch is proposed and numerically simulated by using the finite difference time domain method with a perfectly matched layer absorbing boundary condition. It is found that the double teeth-shaped structure filled with liquid crystal can realize the function of a switch. The modulation depth of the double teeth-shaped structure is larger than 50?dB.  相似文献   

17.
18.
Abstract

A triple-channel plasmonic system, consisting of several slot cavities coupled with the bus and drop waveguides, has been investigated numerically and theoretically. The impacts of adjusting various parameters on transmissivity are researched in detail. The results demonstrate that one can separate arbitrary wavelength and attain high transmissivity by suitably setting parameters. The sensitivity of the structure is about 950 nm shift per refractive index unit and the figure of merit is as high as 25.5. The plasmonic filter system possesses advantage of easy fabrication and compactness, which can find more applications in highly integrated optical devices, optical communication, and high sensitivity nano sensor.  相似文献   

19.
20.
文章介绍了用平面平晶校准量块工作面平面度的方法,根据校准原理提出局部平面度校准来提高被测量面平面度校准的精度,并对平面平晶的局部校准提出了新的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号