首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2D van der Waals heterostructures serve as a promising platform to exploit various physical phenomena in a diverse range of novel spintronic device applications. Efficient spin injection is the prerequisite for these devices. The recent discovery of magnetic 2D materials leads to the possibility of fully 2D van der Waals spintronics devices by implementing spin injection through the magnetic proximity effect (MPE). Here, the investigation of MPE in 2D graphene/CrBr3 van der Waals heterostructures is reported, which is probed by the Zeeman spin Hall effect through non-local measurements. Quantitative estimation of the Zeeman splitting field demonstrates a significant MPE field even in a low magnetic field. Furthermore, the observed anomalous longitudinal resistance changes at the Dirac point RXX,D with increasing magnetic field near ν = 0 may be attributed to the MPE-induced new ground state phases. This MPE revealed in the graphene/CrBr3 van der Waals heterostructures therefore provides a solid physics basis and key functionality for next-generation 2D spin logic and memory devices.  相似文献   

2.
Hydrogels have found broad applications in various engineering and biomedical fields, where the shape and size of hydrogels can profoundly influence their functions. Although numerous methods have been developed to tailor 3D hydrogel structures, it is still challenging to fabricate complex 3D hydrogel constructs. Inspired by the capillary origami phenomenon where surface tension of a droplet on an elastic membrane can induce spontaneous folding of the membrane into 3D structures along with droplet evaporation, a facile strategy is established for the fabrication of complex 3D hydrogel constructs with programmable shapes and sizes by crosslinking hydrogels during the folding process. A mathematical model is further proposed to predict the temporal structure evolution of the folded 3D hydrogel constructs. Using this model, precise control is achieved over the 3D shapes (e.g., pyramid, pentahedron, and cube) and sizes (ranging from hundreds of micrometers to millimeters) through tuning membrane shape, dimensionless parameter of the process (elastocapillary number Ce), and evaporation time. This work would be favorable to multiple areas, such as flexible electronics, tissue regeneration, and drug delivery.  相似文献   

3.
1D core–shell magnetic materials with mesopores in shell are highly desired for biocatalysis, magnetic bioseparation, and bioenrichment and biosensing because of their unique microstructure and morphology. In this study, 1D magnetic mesoporous silica nanochains (Fe3O4@nSiO2@mSiO2 nanochain, Magn‐MSNCs named as FDUcs‐17C) are facilely synthesized via a novel magnetic‐field‐guided interface coassembly approach in two steps. Fe3O4 particles are coated with nonporous silica in a magnetic field to form 1D Fe3O4@nSiO2 nanochains. A further interface coassembly of cetyltrimethylammonium bromide and silica source in water/n‐hexane biliquid system leads to 1D Magn‐MSNCs with core–shell–shell structure, uniform diameter (≈310 nm), large and perpendicular mesopores (7.3 nm), high surface area (317 m2 g?1), and high magnetization (34.9 emu g?1). Under a rotating magnetic field, the nanochains with loaded zoledronate (a medication for treating bone diseases) in the mesopores, show an interesting suppression effect of osteoclasts differentiation, due to their 1D nanostructure that provides a shearing force in dynamic magnetic field to induce sufficient and effective reactions in cells. Moreover, by loading Au nanoparticles in the mesopores, the 1D Fe3O4@nSiO2@mSiO2‐Au nanochains can service as a catalytically active magnetic nanostirrer for hydrogenation of 4‐nitrophenol with high catalytic performance and good magnetic recyclability.  相似文献   

4.
Based on the mean field theory, we have investigated the transition temperature T c (H) of anisotropic superconductivity in quasi-two-dimensional (Q2D) tight-binding electrons in a strong magnetic field, where we assume the nearest-site attractive interaction. By taking account of the quantum effect of electronic motion in a strong magnetic field parallel to the 2D conducting plane, T c (H) of the Q2D superconductor has been shown to increase in an oscillatory manner as the magnetic field becomes large and to reach T c (0) in a strong magnetic field limit for the spin-triplet superconductor. We get the different magnetic field dependencies from that of on-site case.  相似文献   

5.
By doing sensitive magnetic measurement, the current-voltage ( I-V or E-j ) characteristics were determined for Tl 2 Ba 2 CaCu 2 O 8 thin films at temperatures between 4.2 K and 70 K in magnetic fields up to 6T. We found a crossover of the dimensionality of flux dynamics from 3D at low fields to 2D at high fields. The vortex matter melts at a finite temperature at a low field ( 3D ) and at zero K at a high field ( 2D ). Finally we attempt to give a vortex phase diagram based on this analysis.  相似文献   

6.
Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the active magnetic regenerator (AMR) from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33−xSrxMn1.05O3, gives both a low pressure drop and allows grading of the Curie temperature along the plates. This may be accomplished by a novel technique where a compositionally-graded material is tape cast in one piece. The magnet assembly is based on a novel design strategy, to create alternating high- and low magnetic field regions within a magnet assembly. Focus is on maximising the magnetic field in the high field regions but also, importantly, minimising the flux in the low field regions. The design is iteratively optimised through 3D finite element magnetostatic modelling.  相似文献   

7.
The critical magnetic fieldsH c2 of superconducting layered structures V/Cu were investigated. The double-dimensional crossover 3D-2D-3D was observed on the temperature (H c2(θ)) dependences of critical magnetic fields. The field crossover 3D-2D is caused by strong temperature dependence of superconducting coherence length ξ s nearT c . The second crossover 2D-3D is provided by temperature dependence of normal metal coherence length ξ N and reflects the 3D isotropization of layered structure V/Cu at low temperature.  相似文献   

8.
A new model based on percolative computation directly performed for an array system of Josephson junctions is reported. The number of percolative paths is obtained and the total critical current of the model system is estimated from 2D and 3D arrays at selected values of external magnetic field. The evolution of the critical current distribution of the junctions at increasing magnetic field is studied in view of the relevance in percolative path calculations and compared with the experimental distribution obtained fromI– V characteristics. Percolative simulation results are shown to reproduce more satisfactory experimental critical current behavior in external magnetic fields, obtained in highly porous thick YBa2Cu3O7-x films electrophoretically deposited than mere statistical averages.  相似文献   

9.
The recent isolation of 2D van der Waals magnetic materials has uncovered rich physics that often differs from the magnetic behavior of their bulk counterparts. However, the microscopic details of fundamental processes such as the initial magnetization or domain reversal, which govern the magnetic hysteresis, remain largely unknown in the ultrathin limit. Here a widefield nitrogen-vacancy (NV) microscope is employed to directly image these processes in few-layer flakes of the magnetic semiconductor vanadium triiodide (VI3). Complete and abrupt switching of most flakes is observed at fields Hc ≈ 0.5–1 T (at 5 K) independent of thickness. The coercive field decreases as the temperature approaches the Curie temperature (Tc ≈ 50 K); however, the switching remains abrupt. The initial magnetization process is then imaged, which reveals thickness-dependent domain wall depinning fields well below Hc. These results point to ultrathin VI3 being a nucleation-type hard ferromagnet, where the coercive field is set by the anisotropy-limited domain wall nucleation field. This work illustrates the power of widefield NV microscopy to investigate magnetization processes in van der Waals ferromagnets, which can be used to elucidate the origin of the hard ferromagnetic properties of other materials and explore field- and current-driven domain wall dynamics.  相似文献   

10.
Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2Ge2Te6 insulators, itinerant ferromagnetic Fe3GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC), and relatively better stability, is a promising candidate for achieving permanent room-temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3. The magneto-optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices.  相似文献   

11.
M. Dumling  R. Flükiger 《低温学》1995,35(12):867-870
The magnetic field generation in a simple solenoid is reconsidered for the case where the magnetic field is generated by a superconductor with anisotropy in its critical current density. In this case the influence of the radial magnetic field at the solenoid ends on the weak direction of the conductor has to be taken into account. Instead of the usual load line which stems from the maximum axial field at the inner turns, two load lines must be considered: one as usual, and the second one representing the radial field at the coil end. The maximum field generated by the solenoid is determined by which load line meets its respective jc-H curve first. For tapes of (Bi,Pb)2Sr2Ca2Cu3Ox it is the radial field at the solenoid ends which determines the central field which can be generated by the solenoid. This is also the case for most other anisotropic superconductors even with a moderate jc anisotropy of, for example, two. Insert coils in a background field can significantly raise the maximum central field as the ratio between axial and radial fields is different. This gain for a magnet made from Bi(2223) tapes is of the order of 30% (at T= 77 K). Some alternatives for maximum field generation using anisotropic tapes are discussed.  相似文献   

12.
An attempt is made to study theoretically the thermoelectric power in ultrathin films ofA 3 II B 2 V semiconductors in the presence of a quantizing magnetic field by formulating a new magneto-dispersion law, within the framework ofk · p formalism incorporating the anisotropies in the band parameters. It is found, taking ultrathin films ofn-Cd3P2 as an example, that the same power decreases with increasing surface electron concentration and changes in an oscillatory manner with film thickness and quantizing magnetic field. In addition, the well-known results for parabolic energy bands have also obtained from our expressions as special cases.  相似文献   

13.
Tissue engineering, often referred to as regenerative medicine and reparative medicine, is an interdisciplinary field that necessitates the combined effort of cell biologists, engineers, material scientists, mathematicians, geneticists, and clinicians toward the development of biological substitutes that restore, maintain, or improve tissue function. It has emerged as a rapidly expanding approach to address the organ shortage problem and comprises tissue regeneration and organ substitution. Cells placed on/or within constructs is the most common strategy in tissue engineering. Successful cell seeding depends on fast attachment of cell to scaffolds, high cell survival and uniform cell distribution. The seeding time is strongly dependent on the scaffold material and architecture. Scaffolds provide an initial biochemical substrate for the novel tissue until cells can produce their own extra-cellular matrix (ECM). Thus scaffolds not only define the 3D space for the formation of new tissues, but also serve to provide tissues with appropriate functions. These scaffolds are often critical, both in vivo (within the body) or in vitro (outside the body) mimicking in vivo conditions. Additive fabrication processes represent a new group of non-conventional fabrication techniques recently introduced in the biomedical engineering field. In tissue engineering, additive fabrication processes have been used to produce scaffolds with customised external shape and predefined internal morphology, allowing good control of pore size and pore distribution. This article provides a comprehensive state-of-the-art review of the application of biomanufacturing additive processes in the field of tissue engineering. New and moving trends in biomanufacturing technologies and the concept of direct cell-printing technologies are also discussed.  相似文献   

14.
Magnetic shields of various high-temperature superconductors, YBa2Cu3O7−x (YBCO), YBa2Cu3O7−x -Ag composites (random inclusions as well as non-random coatings) and Bi2Sr2Ca2Cu3O x (BSCCO) were prepared by uniaxial as well as isostatic compression with various dimensions. The shielding properties were measured at 77 K for dc and ac magnetic fields in the range of frequencies from 100 Hz to 10 kHz. The critical penetration field (CPF), defined as the value of the applied magnetic field at which a detectable field was observed inside the cylinder, varied from cylinder to cylinder and also with the ageing of the cylinders in the case of YBCO shields. The highest value of CPF was 16 G at 77 K for YBCO shield prepared by isostatic compression. Even though the stability of BSCCO shields with respect to ageing is good, the CPF values are very low compared to those for YBCO. Detailed studies were performed in the case of YBCO shields. The CPF decreased as a function of time over a period of 90 days. The CPF decreased as the frequency of the applied field was increased. The wave form of the field inside the pot for a sinusoidal applied field was highly distorted and showed the presence of higher harmonics with appreciable amplitude. The wave form was Fourier-analysed to yield the field inside the shield along with the harmonics. The shields with Ag addition seem to give better performance at high fields.  相似文献   

15.
Structural color hydrogels are promising candidates as scaffold materials for tissue engineering and for matrix cell culture and manipulation, while their super‐elastic features are still lacking due to the irreconcilable interfere of the precursor and the self‐assembly unit. This hinders many of their practical biomedical applications where elasticity is required. Herein, hydrophilic and size‐controllable Fe3O4@poly(4‐styrenesulfonic acid‐co‐maleic acid) (PSSMA)@SiO2 magnetic response photonic crystals are fabricated as the assembly units of the structural color hydrogels by orderly packing of core–shell colloidal nanocrystal clusters via a two‐step facile synthesis approach. These units are capable of responding instantaneously to an external magnetic field with resistance to interference of ions, thus, by integrating super‐elastic hydrogels, super‐elastic magnetic structural color hydrogels can be achieved. The structural color arises from the dynamic ordering of the magnetic nanoparticles through the contactless control of external magnetic field, allowing regional polymerization of hydrogels via changing orientation and strength of external magnetic field. These regionally polymerized super‐elastic magnetic structural color hydrogels can work as anti‐counterfeiting labels with super‐elastic identification, which may be widely used in the future.  相似文献   

16.
Abstract

A zero-gap state with a Dirac cone type energy dispersion was discovered in the organic conductor α-(BEDT-TTF)2I3 under high hydrostatic pressures. This is the first two-dimensional (2D) zero-gap state discovered in bulk crystals with a layered structure. In contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The present system, therefore, provides a new type of massless Dirac fermion system with anisotropic Fermi velocity. This system exhibits remarkable transport phenomena characteristic to electrons on the Dirac cone type energy structure. The carrier density, written as nT2, is a characteristic feature of the 2D zero-gap structure. On the other hand, the resistivity per layer (sheet resistance RS) is given as RS=h/e2 and is independent of temperature. The effect of a magnetic field on samples in the zero-gap system was examined. The difference between zero-gap conductors and conventional conductors is the appearance of a Landau level called the zero mode at the contact points when a magnetic field is applied normal to the conductive layer. Zero-mode Landau carriers give rise to strong negative out-of-plane magnetoresistance.  相似文献   

17.
We present precise measurements of in-plane thermal conductivity for superconducting single crystals of YBa2Cu3O7–x (YBCO) withT c =92 and 60 K, Bi2Sr2CaCu2O8 (BSCCO), and of Zn-doped YBCO. Magnetization and thermal conductivity data obtained with the same 90-K YBCO crystal demonstrate a close relationship between the magnetic thermal resistivity and the internal magnetic fieldB in a superconductor in the mixed state. For all superconductors studied here, the magnetic thermal resistivity is a sublinear function of magnetic field. The origins of the nonlinearity are discussed.Angular dependences of the magnetic thermal resistivity have been shown to depart from the anisotropic 3D superconductor model and are in quantitative agreement with a quasi-2D model. Implications for spatial modulation of the order parameter are made.  相似文献   

18.
Composites of BaTiO3 and CoFe2O4 have been prepared with various compositions by double sintering method. The presence of the two phases has been confirmed by XRD. Variation of dielectric constant with temperature in these samples has been studied. All the samples have shown linear magnetoelectric conversion in the presence of static magnetic field. The magnetoelectric effect (dE/dH) has been studied as a function of intensity of magnetic field. The maximum value of the conversion factor (dH/dH)max was found to be 0·16 mV/cm/Oe.  相似文献   

19.
T. Schild  H. Cloez 《低温学》1998,38(12):1251-1257
In usual superconducting devices such as magnets for NMR, the magnetic field is perpendicular to the superconducting strand axis. But in some special devices, such as magnets for the toroidal field system of fusion machines, the strands can experience any field orientation. For NbTi strands, the pinning force is dependent on the field orientation because of the drawing process (Takacs, S., Polak, M. and Krempasky, L., Critical currents of NbTi tapes with differently oriented anisotropic defects, Cryogenics, 1983, 23, 153–159). In the case of Nb3Sn strands, the draw and react process suggests that the pinning force is isotropic. In fact, preliminary experiments have shown the contrary, which is why the magnetic field orientation dependence of the critical current for two types of industrial Nb3Sn strands has been measured. These measurements have been performed for seven field orientations at field strengths up to 20 T. A clear anisotropic effect has been observed, which cannot be explained by Kramer's pinning law. The results are in very good agreement with an empirical law proposed in a recent study by Takayasu et al. (Takayasu, M., Montgomery, D.B. and Minervini, J.V., Effect of magnetic field direction on the critical current of twisted multifilamentary superconducting wires, Inst. of Phys. Conf. Ser., 1997, 158, 917–920). The parameters to be used in this law could be specific to the manufacturing process.  相似文献   

20.
Electrospray is a simple and versatile approach to deposit thin-films. Traditionally, electrospray is achieved through capillary nozzle electrode to create fluid jet. Here, we report a novel needleless electrospray approach to continuously deposit the magnetic film from the magnetization-induced self-assembling cone array of poly(vinyl pyrrolidone) (PVP)/Fe3O4 ferrofluid without any nozzle and feed unit. A spiral tower is used to pump the PVP/Fe3O4 ferrofluid and a 3D peak-cluster is self-assembled on the tip surface under an external magnetic field. The multiple and parallel jets can be continuously emitted from the cone array of 3D peak-cluster, and get deposited on the aluminum foil as a smooth magnetic film when a high-voltage electric field is further applied. This needleless electrospray approach is simple, and cost-effective with a high productivity. The prepared magnetic film mainly composed of Fe3O4 nanoparticles and PVP polymer exhibits superparamagnetic property and good magnetic field responsive property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号