首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The quest for sustainable energy sources has led to accelerated growth in research of organic solar cells (OSCs). A solution‐processed bulk‐heterojunction (BHJ) OSC generally contains a donor and expensive fullerene acceptors (FAs). The last 20 years have been devoted by the OSC community to developing donor materials, specifically low bandgap polymers, to complement FAs in BHJs. The current improvement from ≈2.5% in 2013 to 17.3% in 2018 in OSC performance is primarily credited to novel nonfullerene acceptors (NFA), especially fused ring electron acceptors (FREAs). FREAs offer unique advantages over FAs, like broad absorption of solar radiation, and they can be extensively chemically manipulated to tune optoelectronic and morphological properties. Herein, the current status in FREA‐based OSCs is summarized, such as design strategies for both wide and narrow bandgap FREAs for BHJ, all‐small‐molecule OSCs, semi‐transparent OSC, ternary, and tandem solar cells. The photovoltaics parameters for FREAs are summarized and discussed. The focus is on the various FREA structures and their role in optical and morphological tuning. Besides, the advantages and drawbacks of both FAs and NFAs are discussed. Finally, an outlook in the field of FREA‐OSCs for future material design and challenges ahead is provided.  相似文献   

2.
To make organic solar cells (OSCs) more competitive in the diverse photovoltaic cell technologies, it is very important to demonstrate that OSCs can achieve very good efficiencies and that their cost can be reduced. Here, a pair of nonfullerene small‐molecule acceptors, IT‐2Cl and IT‐4Cl, is designed and synthesized by introducing easy‐synthesis chlorine substituents onto the indacenodithieno[3,2‐b]thiophene units. The unique feature of the large dipole moment of the C? Cl bond enhances the intermolecular charge‐transfer effect between the donor–acceptor structures, and thus expands the absorption and down shifts the molecular energy levels. Meanwhile, the introduction of C? Cl also causes more pronounced molecular stacking, which also helps to expand the absorption spectrum. Both of the designed OSCs devices based on two acceptors can deliver a power conversion efficiency (PCE) greater than 13% when blended with a polymer donor with a low‐lying highest occupied molecular orbital level. In addition, since IT‐2Cl and IT‐4Cl have very good compatibility, a ternary OSC device integrating these two acceptors is also fabricated and obtains a PCE greater than 14%. Chlorination demonstrates effective ability in enhancing the device performance and facile synthesis route, which both deserve further exploitation in the modification of photovoltaic materials.  相似文献   

3.
With the rapid advance of organic photovoltaic materials, the energy level structure, active layer morphology, and fabrication procedure of organic solar cells (OSCs) are changed significantly. Thus, the photoelectronic properties of many traditional electrode interlayers have become unsuitable for modifying new active layers; this limits the further enhancement in OSC efficiencies. Herein, a new design strategy of tailoring the end-capping unit, ITIC, to develop a cathode interlayer (CIL) material for achieving high power conversion efficiency (PCE) in OSCs is demonstrated. The excellent electron accepting capacity, suitable energy level, and good film-forming ability endow the S-3 molecule with an outstanding electron extraction property. A device with S-3 shows a PCE of 16.6%, which is among the top values in the field of OSCs. More importantly, it is demonstrated that the electrostatic potential difference between the CIL molecule and the polymer donor plays a crucial role in promoting exciton dissociation at the CIL/active layer interface, contributing to additional charge generation; this is crucial for enhancement of the current density. The results of this work not only develop a new design strategy for high-performance CIL, but also demonstrate a reliable approach of density functional theory (DFT) calculation to predict the effect of the CIL chemical structure on exciton dissociation in OSCs.  相似文献   

4.
Organic solar cells (OSCs) based on bulk heterojunction structures are promising candidates for next‐generation solar cells. However, the narrow absorption bandwidth of organic semiconductors is a critical issue resulting in insufficient usage of the energy from the solar spectrum, and as a result, it hinders performance. Devices based on multiple‐donor or multiple‐acceptor components with complementary absorption spectra provide a solution to address this issue. OSCs based on multiple‐donor or multiple‐acceptor systems have achieved power conversion efficiencies over 12%. Moreover, the introduction of an additional component can further facilitate charge transfer and reduce charge recombination through cascade energy structure and optimized morphology. This progress report provides an overview of the recent progress in OSCs based on multiple‐donor (polymer/polymer, polymer/dye, and polymer/small molecule) or multiple‐acceptor (fullerene/fullerene, fullerene/nonfullerene, and nonfullerene/nonfullerene) components.  相似文献   

5.
Organic bulk heterojunction solar cells (OSCs) and hybrid halide perovskite solar cells (PSCs) are two promising photovoltaic techniques for next‐generation energy conversion devices. The rapid increase in the power conversion efficiency (PCE) in OSCs and PSCs has profited from synergetic progresses in rational material synthesis for photoactive layers, device processing, and interface engineering. Interface properties in these two types of devices play a critical role in dictating the processes of charge extraction, surface trap passivation, and interfacial recombination. Therefore, there have been great efforts directed to improving the solar cell performance and device stability in terms of interface modification. Here, recent progress in interfacial doping with biopolymers and ionic salts to modulate the cathode interface properties in OSCs is reviewed. For the anode interface modification, recent strategies of improving the surface properties in widely used PEDOT:PSS for narrowband OSCs or replacing it by novel organic conjugated materials will be touched upon. Several recent approaches are also in focus to deal with interfacial traps and surface passivation in emerging PSCs. Finally, the current challenges and possible directions for the efforts toward further boosts of PCEs and stability via interface engineering are discussed.  相似文献   

6.
The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk‐heterojunction organic solar cells (OSCs) based on nanocomposites of π‐conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost‐effective, stable, and high‐performance photovoltaic modules fabricated on large‐area flexible plastic substrates via high‐volume/throughput roll‐to‐roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large‐scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state‐of‐the‐art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques.  相似文献   

7.
The pursuit of low-cost, flexible, and lightweight renewable power resources has led to outstanding advancements in organic solar cells (OSCs). Among the successful design principles developed for synthesizing efficient conjugated electron donor (ED) or acceptor (EA) units for OSCs, chlorination has recently emerged as a reliable approach, despite being neglected over the years. In fact, several recent studies have indicated that chlorination is more potent for large-scale production than the highly studied fluorination in several aspects, such as easy and low-cost synthesis of materials, lowering energy levels, easy tuning of molecular orientation, and morphology, thus realizing impressive power conversion efficiencies in OSCs up to 17%. Herein, an up-to-date summary of the current progress in photovoltaic results realized by incorporating a chlorinated ED or EA into OSCs is presented to recognize the benefits and drawbacks of this interesting substituent in photoactive materials. Furthermore, other aspects of chlorinated materials for application in all-small-molecule, semitransparent, tandem, ternary, single-component, and indoor OSCs are also presented. Consequently, a concise outlook is provided for future design and development of chlorinated ED or EA units, which will facilitate utilization of this approach to achieve the goal of low-cost and large-area OSCs.  相似文献   

8.
Herein, poly(vinylpyrrolidone) (PVP) is used as the cathode interlayer (CIL) through the self‐organization method in inverted organic solar cells (OSCs). By coating a solution of PVP and active layer materials onto a glass/indium tin oxide (ITO) substrate, the PVP can segregate to the near ITO side due to its high surface energy and strong intermolecular interaction with the ITO electrode. The power conversion efficiency (PCE) of the obtained OSC device reaches 13.3%, much higher than that of the control device with a PCE of only 10.1%. The improvement results from the increased exciton dissociation efficiency and the depressed trap‐assisted recombination, which can be attributed to the reduced work function of the cathode by the self‐organized PVP. Additionally, the molecular weight of the PVP has almost no influence on the device performance, and the PVP‐modified device presents superior stability. This method can also be applied in other highly efficient fullerene‐free OSCs, and with a fine selection of the active layer, a high PCE of 14.0% is obtained. Overall, this work demonstrates the great potential of the PVP‐based CIL in inverted OSCs fabricated via the self‐organization method.  相似文献   

9.
Neutral‐colored semitransparent organic solar cells (ST‐OSCs) have attracted considerable attention owing to their unique application in no‐visual‐obstacle building‐integrated photovoltaics. Toward this promising potential application, a synergistic effect is first proposed by employing a dielectric mirror and ternary photoactive layer with near‐infrared absorption to tune the color perception as well as ST‐OSC performance precisely. As a result, a neutral‐color ST‐OSC with high average transmittance of over 21% is successfully constructed, and a remarkable color‐rendering index approaching 100 and high power conversion efficiency (PCE) of 9.37% are simultaneously achieved. To the best of our knowledge, this is the highest PCE reported for neutral‐color ST‐OSCs to date. Importantly, this synergistic effect is demonstrated to be a universal strategy that is not only suitable for various photoactive layer systems, but can also be implanted in flexible substrate. The resulting neutral‐color flexible ST‐OSCs also show a promising PCE of 8.76%.  相似文献   

10.
Relative to electron donors for bulk heterojunction organic solar cells (OSCs), electron acceptors that absorb strongly in the visible and even near‐infrared region are less well developed, which hinders the further development of OSCs. Fullerenes as traditional electron acceptors have relatively weak visible absorption and limited electronic tunability, which constrains the optical and electronic properties required of the donor. Here, high‐performance fullerene‐free OSCs based on a combination of a medium‐bandgap polymer donor (FTAZ) and a narrow‐bandgap nonfullerene acceptor (IDIC), which exhibit complementary absorption, matched energy levels, and blend with pure phases on the exciton diffusion length scale, are reported. The single‐junction OSCs based on the FTAZ:IDIC blend exhibit power conversion efficiencies up to 12.5% with a certified value of 12.14%. Transient absorption spectroscopy reveals that exciting either the donor or the acceptor component efficiently generates mobile charges, which do not suffer from recombination to triplet states. Balancing photocurrent generation between the donor and nonfullerene acceptor removes undesirable constraints on the donor imposed by fullerene derivatives, opening a new avenue toward even higher efficiency for OSCs.  相似文献   

11.
The ultimate goal of organic solar cells (OSCs) is to deliver cheap, stable, efficient, scalable, and eco-friendly solar-to-power products contributing to the global carbon neutral. However, simultaneously balancing these five critical factors of OSCs toward commercialization is extremely challenging. Herein, a green-solvent-processable and open-air-printable self-assembly strategy is demonstrated to synchronously simplify the device architecture, improve the power conversion efficiency (PCE) and enhance the shelf, thermal as well as light illumination stability of OSCs. The cathode interlayer (CIL)-free self-assembled OSCs exhibit the PCE of 15.5%, higher than that of traditional inverted OSCs of 13.0%, which is among the top values for both CIL-free self-assembled OSCs and open-air blade-coated bulk-heterojunction OSCs. The remarkable enhancements are mainly ascribed to the finely self-assembly, subtly controlled donor/acceptor aggregation rate, and delicately manipulated vertical morphology. Besides, this strategy enables 13.2% efficiency on device area of 0.98 cm2, implying its potential for scalability. These findings demonstrate that this strategy can close the lab-to-fab gap of OSCs toward commercialized cheap, stable, efficient, scalable, and eco-friendly OSCs.  相似文献   

12.
The commercialization of nonfullerene organic solar cells (OSCs) critically relies on the response under typical operating conditions (for instance, temperature and humidity) and the ability of scale‐up. Despite the rapid increase in power conversion efficiency (PCE) of spin‐coated devices fabricated in a protective atmosphere, the efficiencies of printed nonfullerene OSC devices by blade coating are still lower than 6%. This slow progress significantly limits the practical printing of high‐performance nonfullerene OSCs. Here, a new and relatively stable nonfullerene combination is introduced by pairing the nonfluorinated acceptor IT‐M with the polymeric donor FTAZ. Over 12% efficiency can be achieved in spin‐coated FTAZ:IT‐M devices using a single halogen‐free solvent. More importantly, chlorine‐free, blade coating of FTAZ:IT‐M in air is able to yield a PCE of nearly 11% despite a humidity of ≈50%. X‐ray scattering results reveal that large π–π coherence length, high degree of face‐on orientation with respect to the substrate, and small domain spacing of ≈20 nm are closely correlated with such high device performance. The material system and approach yield the highest reported performance for nonfullerene OSC devices by a coating technique approximating scalable fabrication methods and hold great promise for the development of low‐cost, low‐toxicity, and high‐efficiency OSCs by high‐throughput production.  相似文献   

13.
The power conversion efficiencies (PCEs) of state‐of‐the‐art organic solar cells (OSCs) have increased to over 13%. However, the most commonly used solvents for making the solutions of photoactive materials and the coating methods used in laboratories are not adaptable for future practical production. Therefore, taking a solution‐coating method with environmentally friendly processing solvents into consideration is critical for the practical utilization of OSC technology. In this study, a highly efficient PBTA‐TF:IT‐M‐based device processed with environmentally friendly solvents, tetrahydrofuran/isopropyl alcohol (THF/IPA) and o‐xylene/1‐phenylnaphthalene, is fabricated; a high PCE of 13.1% can be achieved by adopting the spin‐coating method, which is the top result for OSCs. More importantly, a blade‐coated non‐fullerene OSC processed with THF/IPA is demonstrated for the first time to obtain a promising PCE of 11.7%; even for the THF/IPA‐processed large‐area device (1.0 cm2) made by blade‐coating, a PCE of 10.6% can still be maintained. These results are critical for the large‐scale production of highly efficient OSCs in future studies.  相似文献   

14.
Ternary architecture is one of the most effective strategies to boost the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, an OSC with a ternary architecture featuring a highly crystalline molecular donor DRTB-T-C4 as a third component to the host binary system consisting of a polymer donor PM6 and a nonfullerene acceptor Y6 is reported. The third component is used to achieve enhanced and balanced charge transport, contributing to an improved fill factor (FF) of 0.813 and yielding an impressive PCE of 17.13%. The heterojunctions are designed using so-called pinning energies to promote exciton separation and reduce recombination loss. In addition, the preferential location of DRTB-T-C4 at the interface between PM6 and Y6 plays an important role in optimizing the morphology of the active layer.  相似文献   

15.
Compared with conventional organic solar cells (OSCs) based on single donor–acceptor pairs, terpolymer‐ and ternary‐based OSCs featuring multiple donor–acceptor pairs are promising strategies for enhancing the performance while maintaining an easy and simple synthetic process. Using multiple donor–acceptor pairs in the active layer, the key photovoltaic parameters (i.e., short‐circuit current density, open‐circuit voltage, and fill factor) governing the OSC characteristics can be simultaneously or individually improved by positive changes in light‐harvesting ability, molecular energy levels, and blend morphology. Here, these three major contributions are discussed with the aim of offering in‐depth insights in combined terpolymers and ternary systems. Recent exemplary cases of OSCs with multiple donor–acceptor pairs are summarized and more advanced research and perspectives for further developments in this field are highlighted.  相似文献   

16.
Organic solar cells (OSCs) are one of the most promising cost‐effective options for utilizing solar energy, and, while the field of OSCs has progressed rapidly in device performance in the past few years, the stability of nonfullerene OSCs has received less attention. Developing devices with both high performance and long‐term stability remains challenging, particularly if the material choice is restricted by roll‐to‐roll and benign solvent processing requirements and desirable mechanical durability. Building upon the ink (toluene:FTAZ:IT‐M) that broke the 10% benchmark when blade‐coated in air, a second donor material (PBDB‐T) is introduced to stabilize and enhance performance with power conversion efficiency over 13% while keeping toluene as the solvent. More importantly, the ternary OSCs exhibit excellent thermal stability and storage stability while retaining high ductility. The excellent performance and stability are mainly attributed to the inhibition of the crystallization of nonfullerene small‐molecular acceptors (SMAs) by introducing a stiff donor that also shows low miscibility with the nonfullerene SMA and a slightly higher highest occupied molecular orbital (HOMO) than the host polymer. The study indicates that improved stability and performance can be achieved in a synergistic way without significant embrittlement, which will accelerate the future development and application of nonfullerene OSCs.  相似文献   

17.
Both organic solar cells (OSCs) and organic thermoelectrics (OTEs) are promising energy-harvesting technologies for future renewable and sustainable energy sources. Among various material systems, organic conjugated polymers are an emerging material class for the active layers of both OSCs and OTEs. However, organic conjugated polymers showing both OSC and OTE properties are rarely reported because of the different requirements toward the OSCs and OTEs. In this study, the first simultaneous investigation of the OSC and OTE properties of a wide-bandgap polymer PBQx-TF and its backbone isomer iso-PBQx-TF are reported. All wide-bandgap polymers form face-on orientations in a thin-film state, but PBQx-TF has more of a crystalline character than iso-PBQx-TF, originating from the backbone isomeric structures of α,α ′/β,β ′-connection between two thiophene rings. Additionally, iso-PBQx-TF shows inactive OSC and poor OTE properties, probably because of the absorption mismatch and unfavorable molecular orientations. At the same time, PBQx-TF exhibits both decent OSC and OTE performances, indicating that it satisfies the requirements for both OSCs and OTEs. This study presents the OSC and OTE dual-functional energy-harvesting wide-bandgap polymer and the future research directions for hybrid energy-harvesting materials.  相似文献   

18.
Polymer solar cells (PSCs) have attracted great attention in recent years because of their advantages of easy fabrication, low cost, light weight, and potential for flexible devices. However, the power conversion efficiency (PCE) of the PSCs needs to be improved for future commercial applications. Factors limiting the PCE of the PSCs include the low exploitation of sunlight due to the narrow absorption band of conjugated polymers, and the low charge‐transport efficiency in the devices due to the lower charge‐carrier mobility of the polymer photovoltaic materials. In this Research News article, recent progress in new conjugated polymer photovoltaic materials fabricated by our group and others is reviewed, including polythiophene (PT) and poly(thienylene vinylene) derivatives with conjugated side chains for a broad absorption band, crosslinked PT derivatives with conjugated bridges for higher hole mobility, and low‐bandgap donor–acceptor copolymers for broad, red‐shifted absorption to match the solar spectrum.  相似文献   

19.
Manipulating charge generation in a broad spectral region has proved to be crucial for nonfullerene-electron-acceptor-based organic solar cells (OSCs). 16.64% high efficiency binary OSCs are achieved through the use of a novel electron acceptor AQx-2 with quinoxaline-containing fused core and PBDB-TF as donor. The significant increase in photovoltaic performance of AQx-2 based devices is obtained merely by a subtle tailoring in molecular structure of its analogue AQx-1. Combining the detailed morphology and transient absorption spectroscopy analyses, a good structure–morphology–property relationship is established. The stronger π–π interaction results in efficient electron hopping and balanced electron and hole mobilities attributed to good charge transport. Moreover, the reduced phase separation morphology of AQx-2-based bulk heterojunction blend boosts hole transfer and suppresses geminate recombination. Such success in molecule design and precise morphology optimization may lead to next-generation high-performance OSCs.  相似文献   

20.
Fullerene‐free OSCs employing n‐type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non‐fullerene acceptors exhibit great potential for realizing high‐performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non‐fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号