首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Al2O3 coatings were deposited on 1Cr13 substrates by atmospheric plasma spraying at different deposition temperatures of 140, 275, 375, 480, 530, and 660 °C to investigate the effect of coating surface temperature on the lamellar bonding formation. The fractured cross section morphology was characterized by scanning electron microscopy to reveal the lamellar interface bonding. X-ray diffraction was used to characterize the phase contents in the coating. Micro-hardness, Young??s modulus, and thermal conductivity of the deposits were measured for examining the dependency of coating properties on its microstructure. The results show that the interface area bonded through columnar grain growth across splat-splat interfaces was increased with increasing deposition temperature. Moreover, micro-hardness, Young??s modulus and thermal conductivity were increased with the increase of deposition temperature. However, the phase structure of the coating changed little with deposition temperature. The results evidently indicate that the apparent bonding ratio and properties of deposits can be significantly changed in a wider range through controlling the deposition temperature.  相似文献   

2.
A technique for plasma spraying of a magnesium-substituted tricalcium phosphate powder has been developed; optimum modes of the plasma-jet arc current and the particle size of the sprayed powder have been determined. It has been found that the structure of the resulting coating contains microparticles and nanoparticles with a size of up to 90 μm and up to 100 nm, respectively. The adhesion of the substituted coatings is 13 MPa; on average, it is 20% higher than the adhesion of coatings based on unmodified powders.  相似文献   

3.
In this study, Al2O3, Cr2O3, and Al2O3-Cr2O3 coatings were fabricated by plasma spraying. X-ray diffraction was employed to determine the phase composition of powders and coatings. The morphologies and microstructures of the coatings were characterized using electron probe microanalyzer and transmission electron microscopy. Vickers hardness, fracture toughness, and bending strength of the coatings were measured. Al2O3-Cr2O3 composite coatings show better comprehensive mechanical properties than the individual Al2O3 and Cr2O3 coatings, which are attributed to the former's larger intersplat adhesion or interlamellar cohesion and lower porosity. Solid solution strengthens the phase interfaces and grain boundaries, which is beneficial to improve the mechanical performance of the composite coatings.  相似文献   

4.
Four types of NiCr-Cr2O3 composite coatings doped with different mass fraction of Nd2O3 were deposited by atmospheric plasma spraying. The microstructure and phase composition of as-sprayed coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Furthermore, their friction and wear behaviors at 20 and 600 °C under unlubricated condition were evaluated using CSM high temperature tribometer. The results showed that Nd2O3 could refine microstructure of NiCr-Cr2O3 composite coating and make Cr2O3 distribution more uniform in the coating, which leads to the increase of average microhardness. In addition, NiCr-Cr2O3 composite coatings doped with Nd2O3 had better wear resistance than that without Nd2O3 at experimental temperatures. Especially, the coating containing 8 wt.% Nd2O3 showed the best wear resistance at 20 and 600 °C, which was attributed to the refined microstructure and improved microhardness. At 20 °C, the wear mechanism of the coating was abrasive wear, brittle fracture and splat detachment. At 600 °C, the wear mechanism was adhesion wear and plastic deformation.  相似文献   

5.
Al2O3, Cr2O3, and Al2O3-Cr2O3 composite coatings were produced by plasma spraying. Their tribological properties were evaluated at high load conditions. The average friction coefficients, wear rates, and worn surface temperatures of the coating/graphite pairs were measured. Compared with the single coating/graphite pairs, the friction coefficients of composite coating/graphite pairs are more stable. The corresponding wear rates and worn surface temperatures are lower, which may be conducive to the formation of more effective and stable graphite transfer film on the surface of the coating subjected to abrasion. Especially, 10wt.%Al2O3-90wt.%Cr2O3 (AC90) composite coating shows better anti-wear performance, which may be attributed to its higher thermal conduction.  相似文献   

6.
Nanostructured and ultra-fine WC-Co coatings were prepared by plasma spray. The friction and wear behavior at elevated temperature and failure mechanism were investigated. The results indicated that the sliding wear resistance of nanostructured coating is better than that of ultra-fine coating at high temperature. The wear mechanism is different between ultra-fine coating and nanostructured coating. Brittle fracture and adhesive wear dominate in ultra-fine coating followed with abrasive wear. Toughness fracture and abrasive wear dominate in nanostructured coating followed with adhesive wear.  相似文献   

7.
研究了采用等离子喷涂法制备Al2O3涂层与Al2O3/TiO2复合涂层,以及喷涂前后涂层中相变及涂层的腐蚀行为。结果表明,在喷涂过程中有9%的α-Al2O3及45%的β-Al2O3转变成为γ-Al2O3;机械混合的Al2O3与TiO2之间没有新相Al2TiO5形成,但有39%的TiO2由金红石晶型转变为锐钛矿晶型。在5%沸腾的HCl内γ-Al2O3及β-Al2O3较α-Al2O3被优先腐蚀,TiO2相也同时被腐蚀。  相似文献   

8.
A promising Ni(Al)-Cr2O3-Ag-CNT-WS2 self-lubricating wear-resistant coating was deposited via atmospheric plasma spray of Ni(Al), nano Cr2O3, nano silver and nano WS2 powders, and CNTs. Feedstock powders with various compositions prepared by spray drying were plasma sprayed onto carbon steel substrates. The tribological properties of coatings were tested by a high temperature tribometer in a dry environment from room temperature to 400 °C, and in a natural humid environment at room temperature. It was found that all nanocomposite coatings have better frictional behavior compared with pure Ni(Al) and Ni(Al)-Cr2O3 coatings; the specimen containing aproximately 7 vol.% Ag, CNT, and WS2 had the best frictional performance. The average room temperature friction coefficient of this coating was 0.36 in humid atmosphere, 0.32 in dry atmosphere, and about 0.3 at high temperature.  相似文献   

9.
This paper reports studies into the effect of submicron and nano SiC particles on microstructure, phase composition, hardness, erosion wear, and scratch behavior of Al2O3-20wt.%8YSZ (ZrO2 + 8 wt.% Y2O3) coatings fabricated by atmospheric plasma spraying. The failure mode of erosion wear and scratch for coatings was established and analyzed. The hardness, density, erosion wear, and anti-scratch resistance of coatings fabricated from plasma treating feedstocks were higher than that of coatings made from sintering feedstocks. The erosion wear rate of coatings with SiC was evidently decreased, and there was some small debris on worn surface with characteristic of translamellar fracture. The spallation, fracture, plough, and cracking were main failure mechanism for coatings. In the scratch process, the critical load of coating with SiC was increased. The crack growth resistance of coatings was analyzed from crack length at end of scratch test.  相似文献   

10.
TiAl合金表面等离子喷涂MCrAlY涂层热腐蚀行为研究   总被引:3,自引:0,他引:3  
研究TiAl合金表面等离子喷涂NiCoCrAl-Y2O3涂层在850 ℃下对75%Na2SO4+25%NaCl熔盐的热腐蚀行为,及对TiAl金属间化合物抗高温热腐蚀性能的影响。研究表明,在850 ℃,等离子喷涂NiCoCrAl-Y2O3涂层由于生成Cr2O3,NiO和NiCr2O4等各种氧化物组成的氧化层,显著提高了TiAl基体的抗热腐蚀性能。在热腐蚀过程中,S元素以Ni元素为载体,逐步渗入涂层中,生成过渡产物Ni3S2。随着O分压的升高,反应进入了氧化阶段,生成Cr2O3、NiO等氧化物,随着两种物质含量的增加,最后发生固相反应,生成尖晶石结构的NiCr2O4化合物。过渡产物Ni3S2与腐蚀介质中的Cl-离子形成微电池,可以加快热腐蚀反应速度  相似文献   

11.
The mechanisms of adhesion improvement of plasma-sprayed Al2O3 coatings using dry-ice blasting were investigated. In this study, the change of substrate surface characteristics in both the topography and the wettability due to the treatment of dry-ice blasting was mainly studied. The effect of dry-ice blasting on Al2O3 splat morphology with different treatment durations was also examined. The residual stress of plasma-sprayed Al2O3 coatings using dry-ice blasting was measured by curvature method and compared to that of coatings deposited with conventional air cooling. Based on these numerous assessment tests, it could be concluded that the adhesion improvement of Al2O3 coatings could be attributed to the cleaning effect of dry-ice blasting on different organic substances adsorbed on the substrates and the peening effect.  相似文献   

12.
In this study, Fe-Si nanoparticle composite coating (FSN) and Fe-Si microparticle composite coating (FSM) were prepared via atmospheric plasma spraying, and FSN was thermally treated under hydrogen atmosphere at 1120 °C for holding time of 2.5 h (TFSN). Under transmission electron microscopy, many unmelted nanoscale particles were observed in FSN, while no substantial particles were found in TFSN. On scanning electron microscopy analysis, pores and cracks were observed in FSM and FSN, while no defects were found in TFSN. Scanning electrochemical microscopy testing in 3.5 wt.% NaCl for 5 h revealed that FSM underwent severe pitting corrosion, FSN showed relatively minor pitting corrosion, and TFSN had no pitting corrosion.  相似文献   

13.
The mechanical properties of thermally sprayed metallic coatings are limited by the bonding between splats.In this study,tungsten coatings were deposited at different deposition temperatures by controlling the substrate temperature through shrouded plasma spraying.The dependence of the splat bonding and mechanical properties of W coatings on deposition temperature was investigated.The results showed that the apparent porosity of the coatings decreased from 3.2%to 0.3%with the increase of the deposition temperature.The Young’s modulus of W coating was significantly increased from 128 to 307 GPa as the deposition temperature increased from room temperature to 800°C.The microhardness of the coatings was less influenced by the deposition temperature.It was found that splat bonding across lamellae was formed when the deposition temperature was higher than 600°C compared to the obvious lamellae interface in the coatings deposited at temperatures lower than 600°C.The results evidently revealed that the mechanical properties of plasma-sprayed W coatings could be controlled through the splat bonding by altering deposition temperature.  相似文献   

14.
Al-Si composite coatings reinforced with 0?vol.%, 0.5?vol.%, and 2?vol.% nanodiamond were synthesized by plasma spraying. The effect of the addition of nanodiamond on the microstructure, hardness, and tribological performance of the composite coatings is investigated. The addition of 2?vol.% nanodiamond results in 45% improvement in the wear resistance of Al-Si coating. Al-Si coating with 0.5?vol.% nanodiamond exhibited lower coefficient of friction (0.45) with a 12% improvement in the wear resistance. Plasma-sprayed AlSi coatings with nanodiamond have excellent potential as wear-resistant coatings in automotive applications.  相似文献   

15.
In this study, mechanically alloyed Al-12Si/TiB2/h-BN composite powder was deposited onto aluminum substrates by atmospheric plasma spraying. Wear performance of the coating was investigated with respect to the structural evolution of the composite powder coating. Non-lubricated ball-on-disk tests were used to examine the wear resistance of the coatings. The worn surfaces were examined using scanning electron microscopy and energy dispersive spectroscopy to elucidate the wear mechanisms operating at the sliding interface. It has been observed that TiB2 and in situ formed AlN and Al2O3 phases in combination with h-BN solid lubricant strongly affect the wear performance of the coating.  相似文献   

16.
为提高45钢基体材料的耐腐蚀性能,采用电化学法与氟硅烷修饰相结合的方式在45钢基体表面制备超疏水Ni-P-Al2O3纳米复合镀层,并对镀层的表面形貌、晶相结构、表面粗糙度、润湿性及耐蚀性能进行了研究。结果表明:采用电沉积法制备的Ni-P-Al2O3镀层表面均匀、致密,且无明显气孔缺陷,接触角测试表明其表面达到了超疏水状态,而经电化学加工后,镀层表面形成不规则的微凹坑结构,表面粗糙度值明显增大。经电化学测试,与普通Ni-P-Al2O3镀层相比,超疏水Ni-P-Al2O3镀层的腐蚀电流密度、腐蚀速率均更小,表现出优异的耐腐蚀性能。  相似文献   

17.
以Al2O3-ZrO2(3Y)(含摩尔分数3%Y2O3稳定的ZrO2)纳米复相陶瓷为研究对象,研究了其超塑性变形行为以及纳米相复合带来的新变化.超塑性挤压成形试验表明,在1 650℃~1 700℃,材料表现出类似金属材料的良好成形性能,单位挤压力小于25 MPa.当变形温度达到1 750℃,材料呈现出类似金属的"过烧"现象.首次在陶瓷材料变形后的组织中观察到类似于金属材料变形后出现的"锻造流线",并分析了造成这种特殊现象的原因.  相似文献   

18.
In numerous applications developed at the Commissariat à l’Energie Atomique, Direction de l’Energie Nucléaire (CEA-DEN, French Atomic Agency, Atomic Energy Department), particularly those encountered in the processing of nuclear wastes, metallic components are subjected to extreme environments in service, in terms, for example, of ageing at moderated temperature (several months at about 300 °C) coupled to thermal shocks (numerous cycles up to 850 °C for a few seconds and a few ones up to 1500 °C) under a reactive environment made of a complex mixture of acid vapors in the presence of an electric field of a few hundred volts and a radioactive activity. Alumina plasma-sprayed coatings manufactured with feedstock of different particle size distributions, graded alumina-titania coatings, and phosphate-sealed alumina coatings were investigated to improve the properties of metallic substrates operating in such extreme environments. The effects of particle size distribution, phosphate sealant, and graded titania additions on the dielectric strength of the as-sprayed, thermally cycled and thermally aged coatings were investigated. Thermal ageing test was realized in furnace at 350 °C for 400 h and thermal shocks tests resulted from cycling the coating between 850 and 150 °C using oxyacetylene flame and compressed air-cooling. Alumina coating structures and phase content were characterized in parallel by scanning electron microscopy (SEM) coupled to image analysis and stereological protocols and X-ray diffractometry (XRD). The dielectric strength was assessed by measuring the breakdown voltage at 50 Hz during and after the thermal tests.  相似文献   

19.
Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.  相似文献   

20.
Yttria-stabilized zirconia (YSZ) based composite coatings with the addition of LaMgAl11O19 (LaMA) as the secondary phase, were prepared by air plasma spraying in order to improve the performances of the traditional YSZ coating. Results indicate that the newly developed composite coating shows increased vertical crack density with the enhancement of the LaMA content during thermal cycling process, which results in increased strain tolerance and service lifetime. However, such composite coatings about 200 ??m thick, exhibit inferior thermal cycling lifetimes with respect to the typical YSZ coating for surface temperatures above 1400 °C. The presence of amorphous LaMA phase in the composite coating results in increased thermal conductivity and a relative thin top coat leading to a reduced thermal insulation efficiency. These are believed to be responsible for the premature degradation of bond coat and final top coat spallation failure. Such an investigation gives useful guidelines to develop advanced composite coatings based on YSZ/LaMA systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号