首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al2O3-reinforced molybdenum (Mo) composites were successfully prepared by powder metallurgy to improve the wear resistance of Mo components at high temperature. The reinforced Al2O3 particles are uniformly distributed in the Mo matrix; thus, the Al2O3/Mo composite is harder than monolithic Mo. The friction coefficients of both monolithic Mo and the Al2O3/Mo composite decrease by 37% and 42%, respectively, at 700 °C compared with those at room temperature (self-lubricating phenomenon). This phenomenon is attributed to the formation of very soft MoO3 and FeMoO4 metal oxides on the friction surface at high temperature. The Al2O3/Mo composite has better wear resistance than monolithic Mo at both room temperature and at 700 °C. The notable resistance of the composite particularly at 700 °C can be attributed to its increased hardness and the soft tribofilm forming on the worn surface.  相似文献   

2.
Although corrosion and friction/wear behavior of Fe-based amorphous coatings and their composites has been extensively studied during the past decade, there is very limited work related to tribocorrosion behavior. In this paper, the tribocorrosion behavior of a Fe-based amorphous composite coating reinforced with 20 wt.% Al2O3 particles was investigated in a 3.5% NaCl solution on a ball-on-disk tester and was compared to the monolithic amorphous coating and 316L stainless steel (SS). The results showed that the amorphous composite coating exhibited the highest tribocorrosion resistance among the three materials tested, as evidenced by the lowest coefficient of friction (~0.3) and tribocorrosion wear rate (~1.2 × 10?5 mm3/N·m). In addition, potentiodynamic polarization measurements before and during tribocorrosion testing demonstrated that corrosion resistance of the amorphous composite coating was not influenced so much by mechanical loading compared to the amorphous coating and the 316L SS. Observations on the worn surface revealed a corrosion-wear- and oxidational-wear-dominated tribocorrosion mechanism for the composite coatings. The excellent tribocorrosion resistance of the composite coating results from the effect of chemically stable Al2O3 phase which resists oxidation and delamination during sliding, along with poor wettability with corrosive NaCl droplets.  相似文献   

3.
The phenolic coating filled with micro-MoS2 or micro-graphite was prepared by spraying the coating precursors. The friction and wear behaviors of the unfilled and filled phenolic composite coating sliding against the steel ring were evaluated on an MHK-500 friction and wear tester under dry friction and under water lubrication conditions. The worn surfaces of the unfilled and filled phenolic coating and the transfer films formed on the surface of the steel ring were investigated using a scanning electron microscope (SEM) and an optical microscope (OM), respectively. FTIR analysis was performed to detect the chemical changes of the composite coating under different lubrication conditions. It was found that addition of graphite was effective in enhancing the wear life of the phenolic coating. Especially, the anti-wear ability of the phenolic coating was best when the content of graphite is 10 wt.%. However, the MoS2 as filler was harmful to the friction and wear behaviors of the phenolic coating. The character of the fillers varied with the types of the solid lubricants and the transfer films of varied features formed on the counterpart steel ring, largely accounted for the different friction and wear behaviors of the unfilled and filled phenolic composite coating. Compared with under dry sliding, the phenolic composite coating filled with 10 wt.% MoS2 or 10 wt.% graphite had lower friction coefficients and lower wear life under water lubrication. Since water hindered the formation of transferred films, and might penetrate and corrode the filler-matrix interface, the anti-wear ability of the phenolic composite coating reinforced with MoS2 or graphite deteriorated under water lubrication.  相似文献   

4.
Four types of NiCr-Cr2O3 composite coatings doped with different mass fraction of Nd2O3 were deposited by atmospheric plasma spraying. The microstructure and phase composition of as-sprayed coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Furthermore, their friction and wear behaviors at 20 and 600 °C under unlubricated condition were evaluated using CSM high temperature tribometer. The results showed that Nd2O3 could refine microstructure of NiCr-Cr2O3 composite coating and make Cr2O3 distribution more uniform in the coating, which leads to the increase of average microhardness. In addition, NiCr-Cr2O3 composite coatings doped with Nd2O3 had better wear resistance than that without Nd2O3 at experimental temperatures. Especially, the coating containing 8 wt.% Nd2O3 showed the best wear resistance at 20 and 600 °C, which was attributed to the refined microstructure and improved microhardness. At 20 °C, the wear mechanism of the coating was abrasive wear, brittle fracture and splat detachment. At 600 °C, the wear mechanism was adhesion wear and plastic deformation.  相似文献   

5.
Mo5Si3 and Mo5Si3–Mo3Si–Al2O3 composite were synthesized use MoO3, Mo, Si and Al as raw materials by mechanically induced self propagating reaction and then consolidated by hot-pressing. The microstructure of the materials was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with X-ray energy dispersive spectroscopy (EDS). The effects of the Al2O3 on the mechanical and tribological properties of Mo5Si3–Mo3Si–Al2O3 composite have been studied. It was found that benefits associated with the addition of the Al2O3 to Mo5Si3 and Mo3Si include finer microstructure, higher strength, higher fracture toughness and higher hardness. The dry sliding wear properties of the composite were investigated using against GCr15 bearing steel in ball-on-disk system at room temperature. The results indicated that the friction coefficients and specific wear rates of Mo5Si3–Mo3Si–Al2O3 composite were significantly reduced by the addition of Al2O3, and its specific wear rates decreased by an order of magnitude compare with the monophase Mo5Si3. The friction coefficients of test materials decrease with an increasing load. The dominant wear mechanism of the composites was interpreted by several different wear models involving plastic deformation, adhesion, brittle fracture and reaction to form a tribo-oxidation layer.  相似文献   

6.
Aluminum alloy base surface hybrid composites were fabricated by incorporating with mixture of (SiC+Gr) and (SiC+Al2O3) particles of 20 μm in average size on an aluminum alloy 6061-T6 plate using friction stir processing (FSP). Microstructures of both the surface hybrid composites revealed that SiC, Gr and Al2O3are uniformly dispersed in the nugget zone (NZ). It was observed that the addition of Gr particles rather than Al2O3 particles with SiC particles, decreases the microhardness but immensely increases the dry sliding wear resistance of aluminum alloy 6061-T6 surface hybrid composite. The observed microhardness and wear properties are correlated with microstructures and worn micrographs.  相似文献   

7.
Metal matrix composite coatings obtained by electrodeposition are one of the ways of improving the surfaces of materials to enhance their durability and properties required in different applications. This paper presents an analysis of the surface topography, microstructure and properties (residual stresses, microhardness, wear resistance) of Ni/Al2O3 nanocomposite coatings electrodeposited on steel substrates from modified Watt’s-type baths containing various concentrations of Al2O3 nanoparticles and a saccharin additive. The residual stresses measured in the Ni/Al2O3 coatings decreased with an increasing amount of the co-deposited ceramics. It was established that the addition of Al2O3 powder significantly improved the coatings’ microhardness. The wear mechanism changed from adhesive-abrasive to abrasive with a rising amount of Al2O3 particles and coating microhardness. Nanocomposite coatings also exhibited a lower coefficient of friction than that of a pure Ni-electrodeposited coating. The friction was found to depend on the surface roughness, and the smoother surfaces gave lower friction coefficients.  相似文献   

8.
A new kind of zirconia matrix ceramic material (ZrO2/Al2O3) has been developed with 3Y-PSZ (3 mol% Y2O3 partially stabilized ZrO2) and the additive of alumina. The wear resistance of ZYA20 (3Y-PSZ+20 wt.% Al2O3) has been experimentally investigated compared with ZYA30 (3Y-PSZ+30 wt.% Al2O3) by the wear ring-block test. It is shown that the friction coefficients of ZYA20 and ZYA30 decrease with the increment of the applied load and the wear ratios increase with the increment of the applied load. It is also found that their wear mechanisms are plastic deformation, adhesive and abrasive wear, as well as stripping. The wear resistance of ZYA20 and ZYA30 are very good at low load and ZYA20 is stronger than ZYA30.  相似文献   

9.
Frictional behavior of nano and hybrid-structured NiAl-Cr2O3-Ag-CNT-WS2 adaptive self-lubricant coatings was evaluated at a range of temperatures, from room temperature to 700 °C. For this purpose, hybrid structured (HS) and nanostructured (NS) composite powders with the same nominal compositions were prepared by spray drying and heat treatment techniques. A series of HS and NS coating samples were deposited on steel substrate by an atmospheric plasma spraying process. The tribological behavior of both coatings was studied from room temperature to 700 °C at 100° intervals using a custom designed high temperature wear test machine. Scanning electron microscopy was employed for the evaluation of the composite coatings and worn surfaces. Experimental results indicated that the hybrid coating had inferior tribological properties when compared to the nanostructured coating, showing the attractive frictional behavior on the basis of low friction and high wear resistance; the NS coating possessed a more stable friction coefficient in the temperature range of 25-700 °C against alumina counterface. Microstructural examinations revealed more uniformity in NS plasma-sprayed coatings.  相似文献   

10.
The NiCrBSi–Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi–Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi–0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6–10 N, the NiCrBSi–0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.  相似文献   

11.
With the aim to produce a coating having good corrosion and wear resistance alongside hardness but lesser friction coefficient, Ni-P-PTFE-Al2O3 (NiPPA) dispersion coating was developed. This was achieved by introducing nanosized polytetrafluoroethylene (PTFE) and alumina (Al2O3) in the Ni-P matrix deposited on mild steel substrate. The coating was characterized using scanning electron microscopy, energy dispersive analysis of x-ray, and x-ray diffractrometry. Microhardness and wear resistance of the coating was measured using Vicker’s hardness tester and Pin-on-Disc method, respectively. The corrosion behavior was measured using electrochemical polarization and immersion tests with and without exposure in 3.5% NaCl solution. It is observed that codeposition of Al2O3 and PTFE particles with Ni-P coating results in comparatively smooth surface with nodular grains. The NiPPA coating was observed to have moderate hardness between electroless Ni-P-PTFE and Ni-P-Al2O3 coating and good wear resistance with lubricating effect. Addition of both PTFE and Al2O3 is observed to enhance corrosion resistance of the Ni-P coating. However, improvement in corrosion resistance is more due to addition of Al2O3 than PTFE. Continuous exposure for 10-20 days in corrosive solution is found to deteriorate corrosion protection properties of the coating.  相似文献   

12.
为了降低机械零件在强烈摩擦磨损条件下的摩擦因数,提高其耐磨性,制备了等离子喷涂石墨/CaF2/TiC/镍基合金复合涂层,研究其摩擦学行为及机理。结果表明,石墨/CaF2/TiC/镍基合金复合涂层的摩擦因数为0.22~0.288,较纯镍基合金涂层的降低了25.9%~53%,磨损率较之降低18.6%~70.1%。与GCr15钢球对摩时,复合涂层的磨损表面逐渐形成了由铁氧化物、石墨和CaF2组成的转移层,使GCr15钢球与复合涂层的摩擦转变为钢球与转移层的摩擦。由于转移层起到固体润滑作用,复合涂层的摩擦因数和磨损率大幅度降低。复合涂层的主要磨损机理是转移层在载荷的反复作用下而产生的层脱剥落。  相似文献   

13.
《金属精饰学会汇刊》2013,91(4):207-213
Abstract

Codeposition of silver and alumina particles has been performed within an Ni–P coating on carbon steel samples by electroless deposition to form an Ni–P–Ag–Al2O3 hybrid nanocomposite coating. The structure of heat treated coatings was evaluated by XRD analysis. Tribological properties of the coatings were investigated by a pin-on-disc test method using a 52100 steel pin as counter body at high temperature. A 3D optical profiler was employed to measure the wear rate of the deposits. Surface morphology, cross section and wear scars of the coatings were studied by using SEM equipped with EDS analysis. The results showed that tribological properties of Ni–P–Ag–Al2O3 hybrid coating are similar to Ni–P–Ag conventional composite coating. Moreover, friction coefficient and wear resistance of the hybrid coating are strongly influenced by self-lubricating silver thin layers formed between mating surfaces during high temperature sliding wear.  相似文献   

14.
以添加了少量氧化镧的团聚纳米Al2O3-13%TiO2粉末为原料,利用等离子喷涂技术制备了纳米陶瓷涂层。在MMS-1G型高速摩擦磨损试验机进行了摩擦磨损试验,利用扫描电镜和能谱仪对磨损表面进行了表征。结果表明:涂层组织呈现出典型的层状结构特征,界面结合良好。在高速摩擦磨损试验中,随着载荷的增加,涂层摩擦因数下降,而涂层微裂纹扩展引起涂层剥落,导致磨损率升高。  相似文献   

15.
This paper reports studies into the effect of submicron and nano SiC particles on microstructure, phase composition, hardness, erosion wear, and scratch behavior of Al2O3-20wt.%8YSZ (ZrO2 + 8 wt.% Y2O3) coatings fabricated by atmospheric plasma spraying. The failure mode of erosion wear and scratch for coatings was established and analyzed. The hardness, density, erosion wear, and anti-scratch resistance of coatings fabricated from plasma treating feedstocks were higher than that of coatings made from sintering feedstocks. The erosion wear rate of coatings with SiC was evidently decreased, and there was some small debris on worn surface with characteristic of translamellar fracture. The spallation, fracture, plough, and cracking were main failure mechanism for coatings. In the scratch process, the critical load of coating with SiC was increased. The crack growth resistance of coatings was analyzed from crack length at end of scratch test.  相似文献   

16.
TiAlN/VN multilayer coatings exhibit excellent dry sliding wear resistance and low friction coefficient, reported to be associated with the formation of self-lubricating V2O5. To investigate this hypothesis, dry sliding ball-on-disc wear tests of TiAlN/VN coatings on flat stainless steel substrates were undertaken against Al2O3 at 25 °C, 300 °C and 635 °C in air. The coating exhibited increased wear rate with temperature. The friction coefficient was 0.53 at 25 °C, which increased to 1.03 at 300 °C and decreased to 0.46 at 635 °C. Detailed investigation of the worn surfaces was undertaken using site-specific transmission electron microscopy (TEM) via focused ion beam (FIB) microscopy, along with Fourier transform infrared (FTIR) and Raman spectroscopy. Microstructure and tribo-induced chemical reactions at these temperatures were correlated with the coating’s wear and friction behaviour. The friction behaviour at room temperature is attributed to the presence of a thin hydrated tribofilm and the presence of V2O5 at high temperature.  相似文献   

17.
Wear behavior of plasma-sprayed carbon nanotube (CNT)-reinforced aluminum oxide (Al2O3) composite coatings are investigated at room temperature (298 K), elevated temperature (873 K), and in sea water. Lowest wear volume loss was observed in the sea water as compared to dry sliding at 298 and 873 K. Relative improvement in the wear resistance of Al2O3-8 wt.% CNT coating compared to Al2O3 was 72% at 298 K, 76% at 873 K, and 66% in sea water. The improvement in the wear resistance of Al2O3-CNT coatings is attributed to (i) larger area coverage by protective film on the wear surface at room temperature and in sea water, (ii) higher fracture toughness of Al2O3-CNT coatings due to CNT bridging between splats, and (iii) anti-friction effect of sea water. The average coefficient of friction (COF) was the lowest (0.55) in sea water and the highest (0.83) at 873 K for Al2O3-8 wt.% CNT coating.  相似文献   

18.
Various alumina/tungsten carbide based nanocomposites have been fabricated by spark plasma sintering and their wear properties have been investigated by performing ball-on-disk type wear test at room temperature under ambient environment. Our results reveal that the main facture behavior of the Al2O3/tungsten carbide composites sliding against Al2O3 balls is the plastic deformation. Crack formation and grain pull-out in the wear processes are responsible for lowering the wear rate. The Vickers hardness and toughness values are directly related to wear behavior of the composites that grounds Al2O3/WC to show lower wear rate on smoothly worn surface.  相似文献   

19.
B4C coating was fabricated by vacuum plasma spraying and the tribological properties of the coating against WC-Co alloy were evaluated by sliding wear tests. Al2O3 coating, one of the most commonly used wear-resistant coatings, was employed as comparison in the tribological evaluation. The results obtained show that, the B4C coating is composed of a large amount of nanostructured particles along with some amorphous phases. Both of the friction coefficient and wear rate of the B4C coating are much lower than those of the Al2O3 coating, and the tribological evaluation reveals a decreasing trend for the B4C coating in friction coefficient as well as wear rate with increasing normal load, which is explained in terms of the formation of a protective transfer layer on its worn surface. Tribofilm wear is found to be the dominant wear mechanism involved in the B4C/WC-Co alloy friction pair.  相似文献   

20.
Two types of ceramic composite coatings (denoted as N-AT13 coating and M-AT13 coating) were fabricated on 1Cr18Ni9Ti stainless steel substrate from ultra-fine and coarse Al2O3-13%TiO2 feedstocks by air plasma spraying. The friction and wear behavior of as-prepared coatings sliding against Al2O3 and stainless steel balls under the lubrication of liquid paraffin was evaluated with an SRV friction and wear tester (Optimol, Germany). The fractured and worn surfaces of the coatings were observed using a scanning electron microscope and a field-emission scanning electron microscope; and the wear mechanisms of the coatings were discussed based on scanning electron microscopic analysis and energy dispersive spectrometric analysis. Results show that N-AT13 coating possesses a unique microstructure and strong inter-splat bonding, thereby showing increased microhardness and bonding strength as well as much better friction-reduction and wear resistance than M-AT13 coating. Moreover, there exist differences in the wear mechanisms of N-AT13 and M-AT13 coatings which slide against ceramic and stainless steel balls under the lubrication of liquid paraffin. Namely, with the increase of normal load, the burnishing of N-AT13 coating coupled with Al2O3 ball is gradually transformed to grain-abrasion and deformation, while M-AT13 coating is dominated by grain-pullout and brittle fracture in the whole range of tested normal load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号