首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small signal high frequency ac mobility of the hot electrons in n-HgCdTe and n-InSb has been calculated in the extreme quantum limit at low temperatures considering the non equilibrium phonon distribution as well as the thermal phonon distribution. The energy and the momentum losses of the carriers have been considered due to acoustic phonon scattering via deformation potential and piezoelectric coupling. The ac mobility is found to remain constant up to about 110 GHz for n-HgCdTe and up to about 100 GHz for n-InSb and then it decreases at higher frequencies. The ac mobility for the non equilibrium phonon distribution at lower frequency is found to be higher compared to the thermal phonon distribution and the variation at higher frequency is faster for the thermal phonons. The inclusion of the non equilibrium phonons increases the cut off frequency i.e. the cut off frequency is higher for the non equilibrium phonon distribution. The phase lag of drift velocity is found to increase with the frequency both for the nonequilibrium and the thermal phonon distribution respectively. The influence of the band non parabolicity based on simplified Kane’s model for the extreme quantum limit has also been investigated on the ac mobility of hot electrons and the phase angle. It is observed that at lower frequencies the normalized ac mobility is same both for the parabolic and the non parabolic band but at higher frequencies it is higher for the non parabolic than that of the parabolic band structure. The phase angle increases with frequency and is found to be higher for the parabolic band compared to the non parabolic band. These results can be explained by the Drude theory for ac conductivity.   相似文献   

2.
Recently, Siemens et al. found that the Fourier law may overestimate the energy transported away from one hot spot in the thin film. In this work, the lattice Boltzmann method is employed to investigate phonon transport in silicon thin films. It is found that in the transitional or ballistic regime when the thermal waves initiated from temperature disturbances on two surfaces of the thin film meet in the inner region, the temperature rises significantly, which is different from the case when the heat conduction is induced by the temperature disturbance on one surface of the thin film. Therefore, the interaction of thermal waves induced by the thermal transport from two nanoscale hot spots separated by a nanoscale distance inside the thin film may temporarily cause a higher temperature in some regions between the two hot spots than that predicted by the Fourier law.  相似文献   

3.
The performance of carbon nanotube field-effect transistors is analyzed numerically, using the non-equilibrium Green's function formalism. The effect of electron-phonon scattering on both the DC and switching response of these devices is studied. For the calculation of the switching response, the quasi-static approximation is assumed. The role of the electron-phonon coupling strength and phonon energy are investigated. Our results indicate that scattering with high-energy phonons reduces the on-current only weakly, but can increase the switching time considerably due to charge pile-up in the channel. Conversely, scattering with low-energy phonons reduces the on-current more effectively, but has a weaker effect on the switching time.  相似文献   

4.
Thermal conduction in periodic multilayer composites can be strongly influenced by nonequilibrium electron-phonon scattering for periods shorter than the relevant free paths. Here we argue that two additional mechanisms-quasiballistic phonon transport normal to the metal film and inelastic electron-interface scattering-can also impact conduction in metal/dielectric multilayers with a period below 10 nm. Measurements use the 3ω method with six different bridge widths down to 50 nm to extract the in- and cross-plane effective conductivities of Mo/Si (2.8 nm/4.1 nm) multilayers, yielding 15.4 and 1.2 W/mK, respectively. The cross-plane thermal resistance is lower than can be predicted considering volume and interface scattering but is consistent with a new model built around a film-normal length scale for phonon-electron energy conversion in the metal. We introduce a criterion for the transition from electron to phonon dominated heat conduction in metal films bounded by dielectrics.  相似文献   

5.
We present a new theoretical determination of the thermal boundary resistance at a metal-liquid helium interface. The phonon temperature drops and heat flux densities at the interface are deduced from the numerical solution of the phonon Boltzmann equation inside the metal, with only electron-phonon scattering considered. A calculation of the thermal boundary resistance is performed and a comparison with the Khalatnikov theory is made ; the results differ considerably, the transport approach giving a far smaller resistance, though the phonon boundary conditions in our work are also determined by the classical acoustic theory.Laboratoire associé au Centre National de la Recherche Scientifique.  相似文献   

6.
The strongly correlated thermoelectric properties have been a major hurdle for high-performance thermoelectric energy conversion. One possible approach to avoid such correlation is to suppress phonon transport by scattering at the surface of confined nanowire structures. However, phonon characteristic lengths are broad in crystalline solids, which makes nanowires insufficient to fully suppress heat transport. Here, we employed Si-Ge alloy as well as nanowire structures to maximize the depletion of heat-carrying phonons. This results in a thermal conductivity as low as ~1.2 W/m-K at 450 K, showing a large thermoelectric figure-of-merit (ZT) of ~0.46 compared with those of SiGe bulks and even ZT over 2 at 800 K theoretically. All thermoelectric properties were "simultaneously" measured from the same nanowires to facilitate accurate ZT measurements. The surface-boundary scattering is prominent when the nanowire diameter is over ~100 nm, whereas alloying plays a more important role in suppressing phonon transport for smaller ones.  相似文献   

7.
We have studied heat capacities of 4He adsorbed in straight nanopores 1.8, 2.2, and 2.8 nm in diameter. Heat capacities of the 4He fluid film on the solid layer at 0.08–0.4 K show power laws close to T in 1.8 nm pores, close to T 2 in 2.8 nm pores, and a crossover from T to T 2 with increasing temperature in 2.2 nm pores. These heat capacities are explained by a model assuming a phonon dispersion with continuous one-dimensional (1D) states in the axial direction and discrete energy levels in the azimuthal direction. By fitting experimental data to the model, the phonon velocity along the pore axis and the energy gap for propagation in the cross section are derived. At temperatures sufficiently lower than the energy gap, where the thermal wave length of phonons is much longer than the effective pore diameter, the 4He fluid films show a T-linear heat capacity of 1D phonons propagating only along the pore axis. At higher temperatures, a 1D-2D crossover of phonons occurs.   相似文献   

8.
随着可再生能源及能源转换技术的快速发展, 热电材料在发电及制冷领域的应用前景受到越来越广泛的关注。发展具有高热电优值材料的重要性日益突出, 如何获得低晶格热导率是热电材料的研究重点之一。本文阐述了热容、声速及弛豫时间对晶格热导率的影响, 介绍了本征低热导率热电材料所具有的典型特征, 如强非谐性、弱化学键、本征共振散射及复杂晶胞结构等, 并分析了通过多尺度声子散射降低已有热电材料晶格热导率的方法, 其中包括点缺陷散射、位错散射、晶界散射、共振散射、电声散射等多种散射机制。此外, 总结了几种预测材料最小晶格热导率的理论模型, 对快速筛选具有低晶格热导率的热电材料具有一定的理论指导意义。最后, 展望了如何获得低热导率热电材料的有效途径。  相似文献   

9.
The novel electronic properties of graphene, including a linear energy dispersion relation and purely two-dimensional structure, have led to intense research into possible applications of this material in nanoscale devices. Here we report the first observation of saturating transistor characteristics in a graphene field-effect transistor. The saturation velocity depends on the charge-carrier concentration and we attribute this to scattering by interfacial phonons in the SiO2 layer supporting the graphene channels. Unusual features in the current-voltage characteristic are explained by a field-effect model and diffusive carrier transport in the presence of a singular point in the density of states. The electrostatic modulation of the channel through an efficiently coupled top gate yields transconductances as high as 150 microS microm-1 despite low on-off current ratios. These results demonstrate the feasibility of two-dimensional graphene devices for analogue and radio-frequency circuit applications without the need for bandgap engineering.  相似文献   

10.
We examine the anatomy of the quantitative properties of thermal transport across a solid-liquid boundary as it is described by acoustic mismatch theory. The single parameter, the Kapitza resistance, is a function of four loss parameters and one thermal transport parameter, the thermal diffusivity of the fluid. The loss parameters are to be determined from the dispersion relations for phonons at the peak of the thermal excitation in the material. The temperature dependence of the Kapitza resistance depends on the variation of the phonon excitation in the material with temperature, the familiar temperature-cubed factor, and the variation of the loss factors with temperature and frequency for phonons at the thermal peak, and the variation of the diffusivity with temperature. Since these parameters are undetermined and experimentally rather inaccessible, we conclude that for the present the Kapitza resistance must be viewed as a technological heat transport parameter. Some discussion is given of the part played by second sound in helium II in the surface heat transport process.  相似文献   

11.
We consider a molecular single electron transistor coupled to a vibrational mode. For some values of the bias and gate voltage the electronic transport is possible only by absorption of one or more phonons. The system acts then as a cooler for the mechanical mode at the condition that the electron temperature is lower than the phonon temperature. The final effective temperature of the vibrational mode depends strongly on the bias conditions and can be lower or higher than the reservoir in contact with the oscillator. We discuss the efficiency of this method, in particular we find that there is an optimal value for the electron–phonon coupling that maximizes cooling.  相似文献   

12.
Engineering of materials with specific physical properties has recently focused on the effect of nano-sized 'guest domains' in a 'host matrix' that enable tuning of electrical, mechanical, photo-optical or thermal properties. A low thermal conductivity is a prerequisite for obtaining effective thermoelectric materials, and the challenge is to limit the conduction of heat by phonons, without simultaneously reducing the charge transport. This is named the 'phonon glass-electron crystal' concept and may be realized in host-guest systems. The guest entities are believed to have independent oscillations, so-called rattler modes, which scatter the acoustic phonons and reduce the thermal conductivity. We have investigated the phonon dispersion relation in the phonon glass-electron crystal material Ba(8)Ga(16)Ge(30) using neutron triple-axis spectroscopy. The results disclose unambiguously the theoretically predicted avoided crossing of the rattler modes and the acoustic-phonon branches. The observed phonon lifetimes are longer than expected, and a new explanation for the low kappa(L) is provided.  相似文献   

13.
The energy loss rate of hot electrons with the non-equilibrium phonons in narrowgap semiconductors with hyperbolic band structures has been investigated in the extreme quantum limit condition in the low temperature region. The calculation is done for n-Hg0.8Cd0.2Te sample considering electron scattering by acoustic phonons via piezoelectric coupling to be the dominant loss mechanism. The value of the energy loss rate with hyperbolic band is compared with the results of parabolic and non-parabolic band structures and at the same time all the results are also compared with the experimentally observed data. It is found that with the inclusion of hyperbolic band structure, the value of energy loss rate is found to be close to the experimental values. The dependence of energy loss rate on magnetic field and lattice temperature has been studied. Using the experimental value of the energy loss rate, the phonon life time is evaluated. The value of the phonon life time is found to be of the order of the phonon boundary relaxation time indicating that phonon boundary scattering is the dominant phonon dissipation mechanism. The dependence of the phonon life time on magnetic field, and lattice temperature has also been studied. The phonon life time is also found to decrease with increase in electron temperature.  相似文献   

14.
We examine theoretically the phonon dynamics in the electron-phonon-coupled systems. The model Hamiltonian is a one-dimensional Hubbard model where the hopping of electrons induces the electron-phonon coupling. The numerically exact diagonalization of the Hamiltonian with truncation of the total number of phonons is performed. We calculate the phonon excitation spectra and find that the softening of phonons occurs in insulating case, and a diffusive character appears in the metallic case. We also calculate the charge and spin excitation spectra and find that the dynamics of the phonon coupled with the hopping of electrons is affected by the low energy charge and spin excitations.  相似文献   

15.
采用感应熔炼、球磨与放电等离子烧结的方法制备了SiC第二相均匀分布的Si80Ge20B0.6-SiC纳米复合热电材料。系统研究了细化Si80Ge20B0.6晶粒尺寸与复合SiC纳米颗粒对材料热电性能的影响。球磨导致的Si80Ge20B0.6晶粒尺寸的降低显著增加了材料的晶界数量, 进而增强了晶界对中长波声子的散射, 能够有效降低材料的晶格热导。Si80Ge20B0.6基体中均匀分布的纳米SiC颗粒提供了额外的散射中心和界面,可进一步增强声子散射,降低材料的晶格热导。在纳米结构化与SiC纳米复合的共同作用下, 材料在1000 K 时热电优值ZT达到了0.62, 较基体提高了17%。证明纳米结构化与纳米复合方法能够共同作用于硅锗合金, 提高其热电性能。  相似文献   

16.
The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high‐efficiency Na‐doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer.  相似文献   

17.
To improve the accuracy of velocity measurements in the Brillouin scattering technique using weak thermal phonons, we have used induced coherent phonons, which intensify the scattering. To induce phonons in the gigahertz range, we used a c-axis tilted ZnO film transducer that was developed in our laboratory. This allowed us to induce longitudinal and shear acoustic phonons effectively at hypersonic frequencies. As a result, we obtained scattered light in the silica glass sample that was much more intense than that obtained from the thermal phonons. Because the Brillouin scattering from induced phonons was measured, the shift frequency was that of the electric signal applied to the ZnO transducer. Strong peaks lead to a reduction of the measurement time. This is useful for two-dimensional mapping of thin film elasticity using Brillouin scattering. Additionally, Brillouin scattering enables the simultaneous measurement of longitudinal and shear phonon velocities in the sample plane. This opens up a potential new technique for non-destructive elasticity measurements of various materials.  相似文献   

18.
The thermal conductivity of UO2+x has been investigated by an equilibrium molecular dynamics (EMD) simulation up to 2000 K using the Born–Mayer–Huggins interatomic potential with the partially ionic model. In the present EMD system with the Green–Kubo method, the thermal conductivity was determined by the auto-correlation functions of energy and charge currents and the cross-coupling term. The thermal conductivity of UO2+x decreased with an increase of x and temperature. Its temperature dependence was relatively small for large x values, which was attributed to phonon scattering by excess oxygens. In addition, the heat capacity was calculated using the phonon-level density deduced by the velocity auto-correlation function for constituent ions. The phonon velocity was also evaluated by the phonon- dispersion relationship. Using these thermal properties obtained by EMD calculations, the effect of excess oxygens on the phonon mean free path was discussed.  相似文献   

19.
The coupling of phonons to electrons and other phonons plays a defining role in material properties, such as charge and energy transport, light emission, and superconductivity. In atomic solids, phonons are delocalized over the 3D lattice, in contrast to molecular solids where localized vibrations dominate. Here, a hierarchical semiconductor that expands the phonon space by combining localized 0D modes with delocalized 2D and 3D modes is described. This material consists of superatomic building blocks (Re6Se8) covalently linked into 2D sheets that are stacked into a layered van der Waals lattice. Using transient reflectance spectroscopy, three types of coherent phonons are identified: localized 0D breathing modes of isolated superatom, 2D synchronized twisting of superatoms in layers, and 3D acoustic interlayer deformation. These phonons are coupled to the electronic degrees of freedom to varying extents. The presence of local phonon modes in an extended crystal opens the door to controlling material properties from hierarchical phonon engineering.  相似文献   

20.
The first ever implementation of a thermal AND gate, which performs logic calculations with phonons, is presented using two identical thermal diodes composed of asymmetric graphene nanoribbons (GNRs). Employing molecular dynamics simulations, the characteristics of this AND gate are investigated and compared with those for an electrical AND gate. The thermal gate mechanism originates through thermal rectification due to asymmetric phonon boundary scattering in the two diodes, which is only effective at the nanoscale and at the temperatures much below the room temperature. Due to the high phonon velocity in graphene, the gate has a fast switching time of ≈100 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号