首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal oxides are considered to be promising thermoelectric (TE) materials, especially for high-temperature power-generation applications, because they have many advantages such as low price, light weight, thermal stability, nontoxicity, and high oxidation resistance. For these reasons, oxide-based TE modules were fabricated using p-type pure Ca3Co4O9 and n-type Ca0.9Nd0.1MnO3 legs for power generation at temperatures in excess of 1000?K. This study involved the use of Ag sheets with a Ag paste as electrode materials and alumina plates as a substrate for the modules. The p-type pure Ca3Co4O9 legs were manufactured by spark plasma sintering, and the n-type Ca0.9Nd0.1MnO3 legs were sintered by a conventional process at atmospheric pressure. From a unicouple, a power density as high as 93.2?mW/cm2 under a temperature condition of ??T?=?727?K (T hot?=?1175?K) was obtained. This high power density is believed to be a result of the modified contact of the electrode (notch process) and the optimized material properties (the SPS process and a dopant effect) along with the high ??T obtained in this study (reduced thermal losses because of good packing of thermal insulation). Areas of concern for future research include the following: (1) the measured open-circuit voltage from the present unicouples was only 94.3% of the theoretical voltage, and (2) the internal resistance value was as high as 490% of the theoretical resistance.  相似文献   

2.
Double-filled skutterudites In x Pr y Co4Sb12, which are currently being investigated for potential applications as thermoelectric materials, have been successfully prepared by inductive melting and annealing. Our results showed that In and Pr double filling effectively improves both electrical conductivity and Seebeck coefficient compared with pristine or single-filled CoSb3, giving rise to a respectable power factor. The largest power factor, 2.33 m Wm?1 K?2, was achieved at 609 K for In0.05Pr0.05Co4Sb12; this value is approximately three times that for In x Co4Sb12 (x ≤ 0.3) skutterudites. These results imply that In and Pr double filling are better than In single filling for efficient improvement of the thermoelectric properties of CoSb3 skutterudite.  相似文献   

3.
The high-temperature thermoelectric properties of In x Co4Sb12 (0.05 ≤ x ≤ 0.40) skutterudite compounds were investigated in this study. The phase states of the samples were identified by x-ray diffraction analysis and field-emission scanning electron microscopy at room temperature. InSb and CoSb2 were found as secondary phases in samples with x = 0.10 to 0.40. The filling limit of In into the CoSb3 cages of In x Co4Sb12 was in the range 0.05 < x < 0.10. The electrical resistivity, Seebeck coefficient, and thermal conductivity of the In x Co4Sb12 samples were measured from room temperature to 773 K. The Seebeck coefficient of all samples was negative. Reduction of the thermal conductivity by In addition resulted in a high thermoelectric figure of merit (ZT) of 0.67 for In0.35Co4Sb12 at 600 K.  相似文献   

4.
n-Type In-filled CoSb3 is a known skutterudite compound that has shown promising thermoelectric (TE) properties resulting in high dimensionless figure of merit values at elevated temperatures. Use in various waste heat recovery applications will require survival and operation after exposure to harsh thermal cycling environments. This research focused on uncovering the thermal cycling effects on TE properties of n-type In0.2Co4Sb12 and In0.2Ce0.15Co4Sb12 skutterudite compositions as well as quantifying their temperature-dependent structural properties (elastic modulus, shear modulus, and Poisson??s ratio). It was observed that the Seebeck coefficient and resistivity increased only slightly in the double-filled In,Ce skutterudite materials upon thermal cycling. In the In-filled skutterudites the Seebeck coefficient remained approximately the same on thermal cycling, while the electrical resistivity increased significantly after thermal cycling. Results also show that the thermal conductivity marginally decreases in the case of In-filled skutterudites, whereas the reduction is more pronounced in In,Ce-based skutterudite compounds. The possible reason for this kind of reduction can be attributed to grain pinning effects due to formation of nanoinclusions. High-temperature structural property measurements (i.e., Young??s modulus and shear modulus) are also reported. The results show that these structural properties decrease slowly as temperature increases and that the compounds are structurally stable after numerous (up to 200) thermal cycles.  相似文献   

5.
The thermoelectric properties of In-filled and Fe-doped CoSb3 (In z Co4−x - Fe x Sb12) skutterudites prepared by encapsulated induction melting were examined. A single δ-phase was obtained successfully by subsequent annealing at 823 K for 120 h. The Hall and Seebeck coefficients of the In z Co4−x Fe x Sb12 samples had positive signs, indicating p-type conduction. The electrical conductivity was increased by Fe doping, and the thermal conductivity was decreased by In filling due to phonon scattering. The thermoelectric properties were improved by In filling and Fe doping, and were closely related to the optimum carrier concentration and phonon scattering.  相似文献   

6.
The thermoelectric properties of indium (In) and lutetium (Lu) double-filled skutterudites In x Lu y Co4Sb12 prepared by high-pressure synthesis were investigated in detail from 4 K to 365 K. Our results indicate that In and Lu double filling can remarkably reduce the thermal conductivity, and substantially improve the thermoelectric performance. A thermoelectric figure of merit of ZT = 0.27 for In0.13Lu0.05Co4.02Sb12 was achieved at 365 K, being larger by one order of magnitude than that for CoSb3. It is thought that the large difference in resonance frequencies of the In and Lu elements broadens the range of normal phonon scattering in the multifilled skutterudites, helping to achieve an even lower lattice thermal conductivity. This investigation suggests that an effective way to improve the thermoelectric performance of skutterudite materials is to use In and Lu double filling.  相似文献   

7.
The thermal stability of skutterudite-based thermoelectric modules is of great importance since they are used at elevated temperatures. This study examined the high-temperature stability of In-filled and Fe-doped skutterudites (In0.25Co3FeSb12) as a function of the following aging variables: atmosphere (vacuum and air), temperature, and time. Sb-based oxides are produced preferentially on exposure to high temperatures in air. The oxide layer produced during aging at 823?K in air was much thinner than that produced during aging at 723?K in air. The formation of InSb is believed to retard the oxidation of Sb and act as an obstacle to the growth of the oxide layer. The CoSb3-based skutterudites were stable at 823?K if they were not exposed to air, and InSb phases were not produced in the In0.25Co3FeSb12 skutterudites.  相似文献   

8.
In this study, we investigated the impact of the Ce filling fraction on the thermoelectric properties of p-type filled skutterudites Ce y Fe3CoSb12 (y = 0.6 to 1.0). The electrical conductivity decreases gradually with increasing y, while the Seebeck coefficient displays an opposite variation tendency, consistent with the expected electron donor role of the Ce filler in this compound. The overall power factors are invariable among all the samples. Alteration of the Ce filling fraction exerts little influence on the phonon transport, but the total thermal conductivity markedly declined with increasing y due to the reduced contribution to heat transfer from carriers. As a consequence, the maximum thermoelectric figure of merit ZT reaches ~0.8 for the sample with y = 0.9, comparable to that of pure Fe-based skutterudite CeFe4Sb12; more importantly, the former possesses a much larger average ZT between 300 K and 800 K than the latter, showing superior potential for use in intermediate-temperature thermoelectric power generation applications. Further enhancement of ZT in p-type Fe3CoSb12-based skutterudites could be realized via nanostructuring or a multiple-filling approach.  相似文献   

9.
Bulk skutterudites, such as cobalt triantimonide (CoSb3) are promising inorganic materials for thermoelectric power generation at high temperatures. Generally, bulk CoSb3 is synthesized by high temperature solid state reactions. Herein, we demonstrate the low temperature solution phase synthesis of p-type nanocrystalline CoSb3 and Ba-filled CoSb3. Increase in the temperature dependent Seebeck coefficient with simultaneous increase in temperature dependent electrical conductivity has been observed in the present nanocrystalline samples, which is unusual in the case of bulk CoSb3. Efficient phonon scattering by nanoscale grain boundaries and the additional phonon damping due to the rattling of Ba in the void of nanocrystalline CoSb3 give rise to low thermal conductivity, which results in improved thermoelectric performance in nanocrystalline p-type Ba0.048CoSb3.  相似文献   

10.
The possibility of increasing the efficiency of a thermocouple in the temperature range of 30–320°C is studied using an approach associated with the development of segmented thermoelectric unicouples. n- and p-type thermoelectric unicouples are constructed from low-temperature thermoelectric materials based on bismuth telluride and the addition of an intermediate-temperature material based on PbTe and GeTe, respectively. The thermoelectric unicouples are fabricated by spark plasma sintering (SPS). This method provides a contact resistance of ≤10 μΩ cm. The properties of segmented and conventional unicouples are compared. The efficiency of segmented unicouples in comparison with conventional ones increases by almost 70% and attains 5.3% in the operating range of 30–320°C.  相似文献   

11.
Bi2Te3-based devices have long dominated the commercial market for thermoelectric cooling applications, but their narrow operating temperature range and high cost have limited their possible applications for conversion of low-grade heat into electric power. The recently developed n-type Mg3Sb2-based compounds exhibit excellent transport properties across a wide temperature range, have low material costs, and are nontoxic, so it would be possible to substitute the conventional Bi2Te3 module with a reliable and low-cost all-Mg3Sb2-based thermoelectric device if a good p-type Mg3Sb2 material can be obtained to match its n-type counterpart. In this study, by comprehensively regulating the carrier concentration, carrier mobility, and lattice thermal conductivity, the thermoelectric performance of p-type Mg3Sb2 is significantly improved through Na and Yb doping in Mg1.8Zn1.2Sb2. Moreover, p- and n-type Mg3Sb2 are similar in terms of their coefficients of thermal expansion and their good performance stability, thus allowing the construction of a reliable all-Mg3Sb2-based unicouple. The decent conversion efficiency (≈5.5% at the hot-side temperature of 573 K), good performance stability, and low cost of this unicouple effectively promote the practical application of Mg3Sb2-based thermoelectric generators for low-grade heat recovery.  相似文献   

12.
Bulk multifilled n- and p-type skutterudites with La as the main filler were fabricated using the spark plasma sintering (SPS) method. The thermoelectric properties and thermal stability of these skutterudites were investigated. It was found that the interactions among the filling atoms also play a vital role in reducing the lattice thermal conductivity of the multifilled skutterudites. ZT = 0.76 for p-type La0.8Ba0.01Ga0.1Ti0.1Fe3CoSb12 and ZT = 1.0 for n-type La0.3Ca0.1Al0.1Ga0.1In0.2Co3.75Fe0.25Sb12 skutterudites have been achieved. Furthermore, the differential scanning calorimetry (DSC) results show that there is no skutterudite phase decomposition till 750°C for the La0.8Ba0.01Ga0.1Ti0.1Fe3CoSb12 sample. The thermal stability of the La0.8Ba0.01Ga0.1Ti0.1Fe3CoSb12 skutterudite is greatly improved. Using the developed multifilled skutterudites, the fabricated module with size of 50 mm × 50 mm × 7.6 mm possesses maximum output power of 32 W under the condition of hot/cold sides = 600°C/50°C.  相似文献   

13.
Band structure and density of states (DOS) of CoSb3 single-filled by seven kinds of atoms (R0.125Co4Sb12) are calculated by the density functional method. The results for the electronic structures in turn determine the electrical transport and thermal performance. It is found that the band structure of R0.125Co4Sb12 shows no significant changes compared with that of CoSb3, and the results indicate that void filling with a small quantity of R atoms does not change the bond formation in CoSb3. However, the partial DOS reveals that there could be interaction of Sn, Tl, In, and Yb atoms with CoSb3. The results for the electrical transport properties and thermal properties show that Sn, Tl, and In atoms increase the Seebeck coefficient and La, Eu, and Yb atoms are helpful for increasing the electron concentration and decreasing the thermal conductivity further. According to our calculations and Yang’s principle, double-filled CoSb3 with atomic combinations of (In, Ca), (In, Ba), (Sn, Eu), and (Sn, La) may exhibit good thermoelectric performance.  相似文献   

14.
A CoSb3-based thermoelectric module was fabricated using Ce0.45Co2.5Fe1.5Sb12 p-type leg and Yb0.25Co4Sb12/Yb2O3 n-type leg. Ag–Cu foil was used to construct the junction of hot side legs. With two p–n couples, the module generated a maximum output power (Pmax) of 140 mW and a maximum open-circuit voltage (Vo) of 210 mV under the thermal condition of hot side temperature Th=810 K and a temperature difference ΔT=490 K. No deterioration in output power in vacuum was seen when thermal cycle of five times for the module was carried out under Th=810 K and ΔT=490 K with natural cooling to room temperature, which shows the module has high durability.  相似文献   

15.
Korringa–Kohn–Rostoker coherent potential approximation (KKR-CPA) calculations of Ag-doped CoSb3 point to the presence of either an extra sharp peak of s-symmetry Ag density of states near the valence-band edge when filling the void (2a) or to conventional p-type doping when substituting Sb site (24g). These results suggest a resonant-like impurity level in the former or nearly rigid-band behavior in the latter. To confirm the theoretical predictions, a series of samples with nominal composition Co8Sb24:Ag x (x = 0, 0.1, 0.3, 0.4, 0.5) were prepared. Structural and phase composition analyses were carried out by x-ray diffraction, scanning electron microscopy, and scanning thermoelectric microprobe. Investigations of the influence of Ag impurity on the electrical conductivity and Seebeck coefficient were performed over the temperature range from 300 K to 560 K. It was found that doping CoSb3 with Ag leads to an increase of the thermoelectric power factor α 2 σ in the temperature range from 300 K to 475 K of about an order of magnitude for all doped samples. However, electron probe microanalysis revealed accumulation of Ag mainly in grain boundaries while the presence of Ag in CoSb3 crystallites was not confirmed. This observation corroborates the results of KKR-CPA calculations concerning the formation energy of the Ag x Co4Sb12 system, which is much lower than values calculated for A x Co4Sb12 (A = Ca, Ba).  相似文献   

16.
We report a straightforward methodology for the fabrication of high-temperature thermoelectric (TE) modules using commercially available solder alloys and metal barriers. This methodology employs standard and accessible facilities that are simple to implement in any laboratory. A TE module formed by nine n-type Yb x Co4Sb12 and p-type Ce x Fe3CoSb12 state-of-the-art skutterudite material couples was fabricated. The physical properties of the synthesized skutterudites were determined, and the module power output, internal resistance, and thermocycling stability were evaluated in air. At a temperature difference of 365 K, the module provides more than 1.5 W cm?3 volume power density. However, thermocycling showed an increase of the internal module resistance and degradation in performance with the number of cycles when the device is operated at a hot-side temperature higher than 573 K. This may be attributed to oxidation of the skutterudite thermoelements.  相似文献   

17.
The generating efficiency of thermoelectric generation (TEG) depends not only on the thermoelectric (TE) performance of TE device, but also on its mechanical performance. And choosing suitable TE materials and geometric dimension can improve the working performance of TE device. Mg2Si is one of the most promising TE materials in the medium temperature range, and Mg2Si-based TE devices have broad application prospects. In this paper, a three-dimensional finite model of the Mg2Si-based TE unicouple used for recovering vehicle exhaust waste heat is constructed for the performance analysis. The TE performance and mechanical performance of the Mg2Si-based TE unicouple under the influence of different geometric dimensions are investigated, respectively. The curves of the output power, the power conversion efficiency and the thermal stress distribution varying with different geometric dimensions are discussed in detail. The calculated result would be helpful for further understanding of the TE and mechanical properties of the Mg2Si-based TE unicouple, and it can also provide guidance for further strength check and optimum geometric design of TE unicouples in general.  相似文献   

18.
A series of (Ba,In) double-filled n-type skutterudite materials with nominal composition Ba0.4In m Co4Sb12 (m?=?0 to 0.4, ??m?=?0.1) has been prepared by melt quenching, annealing, and spark plasma sintering (SPS). The presence of In impurity and its effect on the thermoelectric properties of the filled skutterudite materials have been precisely investigated in this work. All samples consisted of skutterudite phase, while traces of In-containing impurity were detected in samples with m????0.3. The electrical conductivity and thermal conductivity decreased, and the absolute value of the Seebeck coefficient increased with increasing m in the range 0 to 0.2; however, the inverse behavior of the electrical conductivity, thermal conductivity, and Seebeck coefficient was observed in the samples with m????0.3. The thermoelectric properties of Ba0.4In m Co4Sb12 in the m range of 0 to 0.2 were changed because of carrier concentration degradation and strong lattice scattering induced by the In filler, while they were intensively affected by the In-containing impurity for m????0.3. Compared with the Ba single-filled skutterudite material, the power factors of all (Ba,In) double-filled skutterudite materials significantly increased and the lattice thermal conductivity dramatically decreased. As a result, two large ZT values for the samples with m?=?0.2 and 0.4 reached 1.19 and 1.25 at 800?K, which is an enhancement of 52% and 60%, respectively.  相似文献   

19.
CoSb3-based skutterudites with substitution of Ni atoms for Co, and substitution of Te and Se atoms for Sb were successfully prepared by solid-state reaction and spark plasma sintering. According to x-ray diffraction analysis the major phase of all the samples had a CoSb3-type structure, although back-scattered electron images showed that small amounts of impurity phases were present in all the samples. The temperature-dependent transport properties were characterized over the temperature range 300–800 K for all the samples. It was found that appropriate substitution with Ni, Te, and Se effectively improved the power factor and reduced the thermal conductivity. As a result, Ni, Te, and Se-tri-doped CoSb3 materials with enhanced thermoelectric figures of merit, ZT, were obtained. The highest ZT was greater than 1.1 at high temperature.  相似文献   

20.
Phase relations were investigated for the In-Co-Sb system in the temperature range from 375°C to 800°C using as-cast and annealed alloys. Phase equilibria in the CoSb-InSb-(Sb) composition triangle are presented by a series of isothermal sections and solidus and liquidus surfaces, accompanied by a Schulz–Scheil reaction scheme. The indium-filled skutterudite In y Co4Sb12 already forms an equilibrium with liquid at 484°C, which might limit high-temperature applications of In-Co-Sb-based skutterudites. The maximal solubility of indium in In y Co4Sb12 (y = 0.22) remains almost constant in the temperature range from 475°C to 700°C and corresponds to the equilibrium with CoSb2 and InSb. The solubility of indium in the skutterudite phase is reduced to y = 0.09 when it coexists in equilibrium with InSb and (Sb), and this decrease of the solubility might be responsible for the formation of InSb precipitates. Temperature-dependent x-ray single-crystal and specific heat data for In y Co4Sb12 were employed to determine the rattling behavior of In atoms in the skutterudite lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号