首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic contamination in water has posed severe health problems around the world. In spite of the availability of some conventional techniques for arsenic removal from contaminated water, development of new laboratory based techniques along with enhancement and cost reduction of conventional techniques are essential for the benefit of common people. This paper provides an overview of the arsenic issue in water such as modes of contamination of ground water as well as surface water by arsenic, its metabolism and health impacts, factors influencing arsenic poisoning, fundamentals of arsenic poisoning mechanism and world scenario of arsenic poisoning. It discusses and compares the conventional laboratory based techniques, like precipitation with alum, iron, Fe/Mn, lime softening, reverse osmosis, electro dialysis, ion exchanges, adsorption on activated alumina/carbon, etc., for arsenic removal from contaminated water. It also discusses the best available techniques and mentions the cost comparison among these techniques too. Recent developments in the research on the laboratory based arsenic removal techniques, like improvement of conventional techniques and advances in removal technology along with its scopes and limitations have also been reviewed.  相似文献   

2.
Some plants are used to remove organic and inorganic contaminants like chlorinated solvents, petrochemicals, pesticides, and explosives. These contaminants can be captured by the plant roots and then sequestered, degraded, immobilized, or transformed into other less toxic or non-toxic products. Cyperus hermaphroditus is a species endemic to the Santa Alejandrina swamp in Veracruz, Mexico, which is a site highly contaminated with industrial and petroleum wastes. The capability of Cyperus hermaphroditus to remove phenanthrene is reported in this study. Removal occurs by adsorption of this contaminant on the plant roots and can be assessed by analyzing the evolution of the absorption spectrum of the root system. Cyperus hermaphroditus plants of three months were cultivated in a hydroponic culture and exposed to 40, 80, and 120ppm phenanthrene for twelve days. Photoacoustic spectra of the root system indicate that higher amounts of phenanthrene are adsorbed with increasing phenanthrene concentrations, suggesting the use of Cyperus herma-phroditus for phenanthrene removal.  相似文献   

3.
Arsenic concentrations above acceptable standards for drinking water have been detected in many countries and this should therefore is a global issue. The presence of arsenic in subsurface aquifers and drinking water systems is a potentially serious human health hazard. The current population growth in Pakistan and other developing countries will have direct bearing on the water sector for meeting the domestic, industrial and agricultural needs. Pakistan is about to exhaust its available water resources and is on the verge of becoming a water deficit country. Water pollution is a serious menace in Pakistan, as almost 70% of its surface waters as well as its groundwater reserves have contaminated by biological, organic and inorganic pollutants. In some areas of Pakistan, a number of shallow aquifers and tube wells are contaminated with arsenic at levels which are above the recommended USEPA arsenic level of 10 ppb (10 μg L−1). Adverse health effects including human mortality from drinking water are well documented and can be attributed to arsenic contamination. The present paper reviews appropriate and low cost methods for the elimination of arsenic from drinking waters. It is recommended that a combination of low cost chemical treatment like ion exchange, filtration and adsorption along with bioremediation may be useful option for arsenic removal from drinking water.  相似文献   

4.
The use of equilibrium-based and mass transfer-based leaching tests has been proposed to provide an integrated assessment of leaching processes from solid wastes. The objectives of the research presented here are to (i) validate this assessment approach for contaminated soils and cement-based matrices, (ii) evaluate the use of diffusion and coupled dissolution-diffusion models for estimating constituent release, and (iii) evaluate model parameterization using results from batch equilibrium leaching tests and physical characterization. The test matrices consisted of (i) a soil contaminated with arsenic from a pesticide production facility, (ii) the same soil subsequently treated by a Portland cement stabilization/solidification (S/S) process, and (iii) a synthetic cement-based matrix spiked with arsenic(III) oxide. Results indicated that a good assessment of contaminant release from contaminated soils and cement-based S/S treated wastes can be obtained by the integrated use of equilibrium-based and mass transfer-based leaching tests in conjunction with the appropriate release model. During the time scale of laboratory testing, the release of arsenic from the contaminated soil matrix was governed by diffusion and the solubility of arsenic in the pore solution while the release of arsenic from the cement-based matrices was mainly controlled by solubilization at the interface between the matrix and the bulk leaching solution. In addition, results indicated that (i) estimation of the activity coefficient within the matrix pore water is necessary for accurate prediction of constituent release rates and (ii) inaccurate representation of the factors controlling release during laboratory testing can result in significant errors in release estimates.  相似文献   

5.
Arsenic poisoning has become one of the major environmental worries worldwide, as millions of people, which have been exposed to high arsenic concentrations (through contaminated drinking water), developed severe health problems. The high toxicity of this element made necessary the enforcement of stringent maximum allowable limits in drinking water. So, the development of novel techniques for its removal from aqueous streams is a very important issue. This paper offers an overview of geochemistry, distribution, sources, toxicity, regulations and applications of selected techniques for arsenic removal. The contribution briefly summarizes adsorption processes and mechanism of arsenic species removal from water streams by means of iron oxide/oxyhydroxide based materials. Sorption capacities of various sorbents (e.g. akaganeite, goethite, hydrous ferric oxide, iron oxide coated sand, Fe(III) loaded resin, granular ferric hydroxide, Ce(IV) doped iron oxide, natural iron ores, iron oxide coated cement, magnetically modified zeolite, Fe-hydroxide coated alumina) have been compared.  相似文献   

6.
氢化物原子荧光光谱法同时测定生活饮用水中砷和硒   总被引:1,自引:0,他引:1  
建立了氢化物发生原子荧光光谱法同时测定生活饮用水中砷和硒的方法.测试结果表明砷和硒在质量浓度分别为0.00μg/L~10.00μg/L和0.00μg/L~40.00μg/L范围内呈线性关系,相关系数分别为(砷r=0.9998,硒r=0.9997)。仪器检出限为砷:0.03μg/L硒:0.05μg/L。本方法检出限砷为0.075μg/L;硒为0.125μg/L。水质样品中砷的回收率为92.6%~96.5%,精密度为0.8%~1.4%;硒的回收率为91.2%~97.4%,精密度为1.0%~1.6%。应用本方法测定生活饮用水中的砷和硒方法简便、快速,结果准确可靠,较好地提高了工作效率。  相似文献   

7.
An integrate study aiming at the occurrence and distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece has been carried out. Groundwater samples from public water supply wells and private wells were analysed for arsenic and other quality parameters (T, pH, EC, Ca, Mg, Na, K, Cl, HCO(3), NO(3), SO(4), B, Fe, Mn). Arsenic showed high spatial variation; ranged from 0.001 to 1.840mg/L. Almost 65% of the examined groundwaters exhibit arsenic concentrations higher than the maximum concentration limit of 0.010mg/L, proposed for water intended for human consumption. Correlation analysis and principal component analysis were employed to find out possible relationships among the examined parameters and groundwater samples. Arsenic is highly correlated with potassium, boron, bicarbonate, sodium, manganese and iron suggesting common geogenic origin of these elements and conditions that enhance their mobility. Three groups of groundwater with different physicochemical characteristics were found in the study area: (a) groundwater with extremely high arsenic concentrations (1.6-1.9mg/L) and high temperature (33-42 degrees C) from geothermal wells, (b) groundwater with relatively high arsenic concentrations (>0.050mg/L), lower temperatures and relatively high concentrations of major ions, iron and manganese and, (c) groundwater with low arsenic concentrations that fulfil the proposed limits for dinking water.  相似文献   

8.
Arsenic, well known of its toxicity, is present in potable water in many areas in the world, as well as in underground water used for water supply in Vojvodina, a region in Serbia. Its removal from raw water is necessary before distribution. In this work two methods of arsenic removal from water are compared. First method is water ozonation by introducing ozone in water and then filtration. Second method is treatment of water in plasma reactor and then filtration. High efficiency of the second method was confirmed by low concentration of arsenic in filtrate (below detection limit).  相似文献   

9.
Synthetically prepared arsenic-laden CalSiCo-sludge was converted to pulverized cement concrete (PCC) using solidification/stabilization technology with cement. Batch leaching experiments were conducted to estimate the leaching of As(III) and As(V) from the CalSiCo-sludge as well as from the PCC. The leaching of As(III) and As(V) was found to be the function of time, pH and concentration of anions such as Cl(-), NO(3)(-), and SO(4)(2-) present in the extraction fluid. It is observed that from the CalSiCo-sludge the leaching of As(III) is >0.05mg/l (which is above the permissible limit for arsenic in drinking water) at any pH. But in case of As(V) the leaching is >0.05mg/l only at pH>8 and at pH<4. It is noted that maximum leaching occurs when the extraction liquid contains Cl(-). In contrary, NO(3)(-) and SO(4)(2-) have negligible effect on arsenic leaching from the CalSiCo-sludge. Extraction tests were carried out to determine the maximum leachable concentration under the chosen conditions of leaching medium and leaching time. Leaching of As(III) and As(V) from exhausted arsenic-laden CalSiCo-sludge and from PCC was carried out in both tap water and rain water. It was noticed that tap water has no effect in leaching of arsenic from CalSiCo-sludge but rain water causes significant amount of leaching, which is mostly due to pH effect. However, in all cases the leaching of As(III) was more than that of As(V). When compared with CalSiCo-sludge PCC showed negligible leaching of arsenic. It was noticed further that the variation of 28 days compressive strength was within 15% of the original strength after replacing 35% cement with exhausted CalSiCo-sludge.  相似文献   

10.
Treatment of groundwater polluted by arsenic compounds by zero valent iron   总被引:2,自引:0,他引:2  
Batch experiments were carried out to study the kinetics and efficiency of inorganic arsenic removal by zero valent iron (ZVI) powder, and as well as the effects of pH, anions, and humic material (HM) on this process. Moreover, column experiment was conducted for 31 days to treat arsenate solution of 500 microg As/L using waste iron chippings as filling. Batch experiments showed that both arsenate and arsenite compounds could be removed efficiently from simulated groundwater by ZVI under aerobic and relative anaerobic conditions. Aerobic condition was favorable to arsenic removal especially for arsenate, while arsenite could be removed more rapidly than arsenate in relative anaerobic condition. Oxidation of arsenite to arsenate by iron species in aerobic environment was observed, which is thought to be an important pathway of arsenite removal. In an unsealed system, the removal efficiency of both arsenate and arsenite decreased at higher pH value. In a sealed system, acidic and alkaline condition seemed to be favorable for arsenate and arsenite removal, respectively. Phosphate and low concentration sulfate caused a decrease in arsenate removal, while high concentration sulfate as well as nitrate caused slight increase in arsenate removal. Presence of HM in solution slightly inhibited arsenic removal. Arsenic removal efficiency in column study was influenced by flow rate and work period of the column. More than 98% of arsenate could be removed stably with a hydraulic resident time of 2 h at last, and the effluent meet the drinking water standard.  相似文献   

11.
Arsenic removal from water/wastewater using adsorbents--A critical review   总被引:19,自引:0,他引:19  
Arsenic's history in science, medicine and technology has been overshadowed by its notoriety as a poison in homicides. Arsenic is viewed as being synonymous with toxicity. Dangerous arsenic concentrations in natural waters is now a worldwide problem and often referred to as a 20th-21st century calamity. High arsenic concentrations have been reported recently from the USA, China, Chile, Bangladesh, Taiwan, Mexico, Argentina, Poland, Canada, Hungary, Japan and India. Among 21 countries in different parts of the world affected by groundwater arsenic contamination, the largest population at risk is in Bangladesh followed by West Bengal in India. Existing overviews of arsenic removal include technologies that have traditionally been used (oxidation, precipitation/coagulation/membrane separation) with far less attention paid to adsorption. No previous review is available where readers can get an overview of the sorption capacities of both available and developed sorbents used for arsenic remediation together with the traditional remediation methods. We have incorporated most of the valuable available literature on arsenic remediation by adsorption ( approximately 600 references). Existing purification methods for drinking water; wastewater; industrial effluents, and technological solutions for arsenic have been listed. Arsenic sorption by commercially available carbons and other low-cost adsorbents are surveyed and critically reviewed and their sorption efficiencies are compared. Arsenic adsorption behavior in presence of other impurities has been discussed. Some commercially available adsorbents are also surveyed. An extensive table summarizes the sorption capacities of various adsorbents. Some low-cost adsorbents are superior including treated slags, carbons developed from agricultural waste (char carbons and coconut husk carbons), biosorbents (immobilized biomass, orange juice residue), goethite and some commercial adsorbents, which include resins, gels, silica, treated silica tested for arsenic removal come out to be superior. Immobilized biomass adsorbents offered outstanding performances. Desorption of arsenic followed by regeneration of sorbents has been discussed. Strong acids and bases seem to be the best desorbing agents to produce arsenic concentrates. Arsenic concentrate treatment and disposal obtained is briefly addressed. This issue is very important but much less discussed.  相似文献   

12.
Stabilization/solidification (S/S) is used as a pre-landfill waste treatment technology that aims to make hazardous industrial wastes safe for disposal. Cement-based solidification/stabilization technology is widely used because it offer assurance of chemical stabilization of many contaminants and produce a stable form of waste. The leaching behavior of arsenic from a solidified/stabilized waste was studied to obtain information about their potential environmental risk. Activated alumina (AA) contaminated with arsenic was used as a waste, which was stabilized/solidified (S/S) using ordinary portland cement (C), fly ash (FA), calcium hydroxide (CH) and various polymeric materials such as polystyrene and polymethyl methacrylate (PMMA). Toxicity characteristics leaching procedure (TCLP) and semi-dynamic leach tests were conducted to evaluate the leaching behavior of arsenic. Formations of calcite along with precipitate formation of calcium arsenite were found to be responsible for low leaching of arsenic from the stabilized/solidified samples. Effective diffusivity of arsenic ion from the matrix and leachablity index was also estimated. Minimum leaching of the contaminant was observed in matrix having AA+C+FA+CH due to the formation of calcite.  相似文献   

13.
Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg(-1) methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg(-1) methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials.  相似文献   

14.
Arsenic (V) is known to form heteropolyacid with ammonium molybdate in acidic aqueous solutions, which can be quantitatively extracted into certain organic solvents. In the present work, 12-molybdoarsenic acid extracted in butan-1-ol is used for quantification of As (V). Total arsenic is estimated by converting arsenic (III) to arsenic (V) by digesting samples with concentrated nitric acid before extraction. Concentration of As (III) in the sample solutions could be calculated by the difference in total arsenic and arsenic (V). The characterization of arsenic was carried out by GFAAS using Pd as modifier. Optimization of the experimental conditions and instrumental parameters was investigated in detail. Recoveries of (90-110%) were obtained in the spiked samples. The detection limit was 0.2 microg l(-1). The proposed method was successfully applied for the determination of trace amount of arsenic (III) and arsenic (V) in process water samples.  相似文献   

15.
Quicklime and quicklime-fly ash-based stabilization/solidification (S/S) effectiveness was evaluated by performing semi-dynamic leaching tests (American Nuclear Society 16.1). Artificial soil samples, contaminated with arsenic trioxide (As2O3) as well as field soil samples contaminated with arsenic (As) were tested. The artificial soils were prepared by mixing amounts of kaolinite or montmorillonite with fine quartz sand. The S/S effectiveness was evaluated by measuring effective diffusion coefficients (De) and leachability indices (LX). Treatment was most effective in kaolinite-based artificial soils treated with quicklime and in quicklime-fly ash treated field soils. The experimental results indicate that De values were lowered as a result of S/S treatment. Upon treatment LX values were higher than 9, suggesting that S/S treated soils are acceptable for "controlled utilization". Based on a model developed by de Groot and van der Sloot [G.J. de Groot, H.A. van der Sloot, in: T.M. Gilliam, C.C. Wiles (Eds.), Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, vol. 2, ASTM STP 1123, ASTM, PA, 1992, p. 149], the leaching mechanism for all of the treated soils was found to be controlled by diffusion. The effect of soluble silica (Si) on As leachability was also evaluated. When soluble Si concentration was less than 1 ppm, As leachability was the lowest. The controlling mechanism of As immobilization whether sorption, precipitation, or inclusion was also evaluated. It was determined that precipitation was the dominant mechanism.  相似文献   

16.
This study was conducted to evaluate the phytoremediation and phytomining potential of 10 plant species growing naturally at one of the largest lead-zinc mines in Northern Vietnam. Total concentrations of heavy metals and arsenic were determined in the plant and in associated soil and water in and outside of the mine area. The results indicate that hyperaccumulation levels (mg kg(-1) dry weight) were obtained in Houttuynia cordata Thunb. (1140) and Pteris vittata L. (3750) for arsenic, and in Ageratum houstonianum Mill. (1130), Potamogeton oxyphyllus Miq. (4210), and P. vittata (1020) for lead. To the best of our knowledge, the present paper is the first report on metal accumulation and hyperaccumulation by H. cordata, A. houstonianum, and P. oxyphyllus. Based on the obtained concentrations of metals, bioconcentration and translocation factors, as well as the biomass of these plants, the two latter species and P. vittata are good candidates for phytoremediation of sites contaminated with arsenic and multi-metals. None of the collected plants was suitable for phytomining, given their low concentrations of useful metals (e.g., silver, gallium, and indium).  相似文献   

17.
The management of arsenic wastes: problems and prospects   总被引:2,自引:0,他引:2  
Arsenic has found widespread use in agriculture and industry to control a variety of insect and fungicidal pests. Most of these uses have been discontinued, but residues from such activities, together with the ongoing generation of arsenic wastes from the smelting of various ores, have left a legacy of a large number of arsenic-contaminated sites. The treatment and/or removal of arsenic is hindered by the fact that arsenic has a variety of valence states. Arsenic is most effectively removed or stabilized when it is present in the pentavalent arsenate form. For the removal of arsenic from wastewater, coagulation, normally using iron, is the preferred option. The solidification/stabilization of arsenic is not such a clear-cut process. Factors such as the waste's interaction with the additives (e.g. iron or lime), as well as any effect on the cement matrix, all impact on the efficacy of the fixation. Currently, differentiation between available solidification/stabilization processes is speculative, partly due to the large number of differing leaching tests that have been utilized. Differences in the leaching fluid, liquid-to-solid ratio, and agitation time and method all impact significantly on the arsenic leachate concentrations.This paper reviews options available for dealing with arsenic wastes, both solid and aqueous through an investigation of the methods available for the removal of arsenic from wastewater as well as possible solidification/stabilization options for a variety of waste streams.  相似文献   

18.
Removal of arsenic from water by zero-valent iron   总被引:8,自引:0,他引:8  
Batch and column experiments were conducted to investigate the effect of dissolved oxygen (DO) and pH on arsenic removal with zero-valent iron [Fe(0)]. Arsenic removal was dramatically affected by the DO content and the pH of the solution. Under oxic conditions, arsenate [As(V)] removal by Fe(0) filings was faster than arsenite [As(III)]. Greater than 99.8% of the As(V) was removed whereas 82.6% of the As(III) was removed at pH 6 after 9h of mixing. When the solution was purged with nitrogen gas to remove DO, less than 10% of the As(III) and As(V) was removed. High DO content and low solution pH also increased the rate of iron corrosion. The removal of arsenic by Fe(0) was attributed to adsorption by iron hydroxides generated from the oxic corrosion of Fe(0). The column results indicated that a filtration system consisting of an iron column and a sand filter could be used for treatment of arsenic in drinking water.  相似文献   

19.
Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern México, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of México (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission M?ssbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study.  相似文献   

20.
The uptake of arsenate (As(V)) and dimethylarsinic acid (DMAA) by aquatic macrophyte Spirodela polyrhiza L. was investigated to determine the influence of arsenic interaction with PO43− and Fe ions. Plants were grown hydroponically on standard Murashige and Skoog (MS) culture solutions. Arsenic concentrations in Fe-oxide (Fe-plaque) on plant surfaces were determined by citrate–bicarbonate–ethylenediaminetetraacetic acid (CBE) technique. S. polyrhiza L. accumulated 51-fold arsenic from arsenate solution compared to that from DMAA solution with initial concentrations of 4.0 and 0.02 μM of arsenic and phosphate, respectively. The arsenate uptake was negatively (p < 0.001) correlated with phosphate uptake and positively (p < 0.05) correlated with iron uptake. About 56% of the total arsenic was accumulated into the plant tissues while 44% was adsorbed on Fe-plaque (CBE-extract), when the plants were grown on arsenate solution. The DMAA uptake into the plant was neither affected by the phosphate concentrations nor correlated (p > 0.05) with iron accumulation. The results suggest that adsorption of arsenate on Fe-plaque of the surface of S. polyrhiza L. contributes to the arsenic uptake significantly. Thus, arsenate uptake in S. polyrhiza L. occurred through the phosphate uptake pathway and by physico-chemical adsorption on Fe-plaques of plant surfaces as well. The S. polyrhiza L. uses different mechanisms for DMAA uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号