首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Considerable research effort has gone into improving the performance of traditional thermoelectric materials such as Bi2?x Sb x Te3 through a variety of nanostructuring approaches. Bottom-up, chemical approaches have the potential to produce very small nanoparticles (?100?nm) with narrow size distribution and controlled shape. For this study, nanocrystalline powder of Bi0.5Sb1.5Te3 was synthesized using a ligand-assisted chemical method, and consolidated into pellets with cold pressing followed by sintering in Ar atmosphere. The thermoelectric transport properties were measured from 7?K to 300?K as a function of sintering temperature. Sintering is found to increase ZT and to move the maximum in ZT to lower temperatures due to a reduction in the free charge concentration. Hall mobility studies indicate that sintering increases the electron mean free path more than it increases the phonon mean free path up to sintering temperature of 598?K. A maximum ZT of 0.42 was measured at temperature of 275?K.  相似文献   

2.
Introducing nanoinclusions in thermoelectric (TE) materials is expected to lower the lattice thermal conductivity by intensifying the phonon scattering effect, thus enhancing their TE figure of merit ZT. We report a novel method of fabricating Bi0.5Sb1.5Te3 nanocomposite with nanoscale metal particles by using metal acetate precursor, which is low cost and facile to scale up for mass production. Ag and Cu particles of ??40?nm were successfully near-monodispersed at grain boundaries of Bi0.5Sb1.5Te3 matrix. The well-dispersed metal nanoparticles reduce the lattice thermal conductivity extensively, while enhancing the power factor. Consequently, ZT was enhanced by more than 25% near room temperature and by more than 300% at 520?K compared with a Bi0.5Sb1.5Te3 reference sample. The peak ZT of 1.35 was achieved at 400?K for 0.1?wt.% Cu-decorated Bi0.5Sb1.5Te3.  相似文献   

3.
The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250°C. Sb2Te3 films revealed low charge carrier density of 2.6?×?1019?cm?3, large thermopower of 130???V?K?1, and large charge carrier mobility of 402?cm2?V?1?s?1. Bi2(Te0.91Se0.09)3 and (Bi0.26Sb0.74)2Te3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50?nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. Ab?initio calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit ZT for Bi2Te3 nanomaterials are discussed.  相似文献   

4.
5.
Bulk thermoelectric materials are of interest for commercial application in both power generation and Peltier refrigeration. Various synthesis approaches have been developed by our group for high performance bulk thermoelectric materials, such as solvo- or hydrothermal synthesis for nanopowders, hot-pressing, and spark plasma sintering for nanostructured bulk materials, and rapid solidification for metal silicides. In this article we report some of our recent results in the development of high ZT thermoelectric materials, including Bi2Te3-Sb2Te3 nanocomposites and CoSb3 micro/nanocomposites prepared by a powder blending route, and GeTe-AgSbTe2 and Mg2Si-Mg2Sn nanocomposites prepared by an in situ route. The results show various possibilities for improved microstructures and therefore enhanced properties of bulk thermoelectric materials through optimization of the preparation processing based on simple synthesis routes. A high ZT of approximately 1.5 has been obtained in both Bi2Te3-Sb2Te3 and GeTe-AgSbTe2 nanocomposites. Further ZT enhancement of the materials should be possible through the control of the nanopowder morphology during synthesis and the hindering of␣grain growth during sintering, as well as through the optimization of composition and doping.  相似文献   

6.
Thermoelectric Bi2Te3 alloy nanopowders with different morphologies were synthesized by hydrothermal processes with different surfactants. The nanopowders were hot-pressed into pellets, and their thermoelectric properties were investigated. The results show that the morphologies of the nanopowders have remarkable effects on the thermoelectric properties of the hot-pressed bulk pellets. A suitable microstructure of the bulk pellet prepared from flower-like nanosheets was found, having a lower electrical resistivity, larger Seebeck coefficient, and lower thermal conductivity, resulting in a high figure of merit ZT ≈ 1.16. The effects of the nanopowders with different morphologies on the microstructure and thermoelectric properties of hot-pressed bulk pellets are discussed.  相似文献   

7.
Antimony telluride, (Sb2Te3), and its doped derivatives are considered to be among the best p-type thermoelectric (TE) materials for room temperature (300–400 K) applications. However, it is still desirable to develop rapid and economical routes for large-scale synthesis of Sb2Te3 nanostructures. We report herein a high yield, simple and easily scalable synthetic method for polycrystalline Sb2Te3 nanostructures. Prepared samples were compacted into dense pellets by use of spark plasma sintering. The products were characterized by x-ray diffraction and scanning electron microscopy. To investigate the anisotropic behavior of Sb2Te3 TE transport property measurements were performed along and perpendicular to the direction of compaction. Thermal conductivity, electrical conductivity, and Seebeck coefficient measurement over the temperature range 350–525 K showed that the anisotropy of the material had a large effect on TE performance.  相似文献   

8.
Nanostructured thermoelectric (TE) materials, for example Sb2Te3, PbTe, and SiGe-based semiconductors, have excellent thermoelectric transport properties and are promising candidates for next-generation TE commercial application. However, it is a challenge to synthesize the corresponding pure nanocrystals with controlled size by low-temperature wet-chemical reaction. Herein, we report an alternative versatile solution-based method for synthesis of plate-like Sb2Te3 nanoparticles in a flask using SbCl3 and Te powders as raw materials, EDTA-Na2 as complexing agent, and NaBH4 as reducing agent in the solvent (distilled water). To investigate their thermoelectric transport properties, the obtained powders were cold compacted into cuboid prisms then annealed under a protective N2 atmosphere. The results showed that both the electrical conductivity (σ) and the power factor (S 2 σ) can be enhanced by improving the purity of the products and by increasing the annealing temperature. The highest power factor was 2.04 μW cm?1 K?2 at 140°C and electrical conductivity remained in the range 5–10 × 103 S m?1. This work provides a simple and economic approach to preparation of large quantities of nanostructured Sb2Te3 with excellent TE performance, making it a fascinating candidate for commercialization of cooling devices.  相似文献   

9.
We present the study of the effect of Te substitution on the thermoelectric properties for Sb in Cu12Sb4?x Te x S13 tetrahedrite compounds with x ranging from 0.2 to 1.5 in the temperature range of room temperature to 723 K. Powder x-ray diffraction and electron microscopy results indicate a successful homogenous substitution without the alteration of the crystal structure or the introduction of secondary phases. Thermoelectric property measurements show that the excess electrons from Te during the substitution fill the unoccupied levels near the top of the valence bands in pure Cu12Sb4S13 compound, moving the Fermi level closer to the top of the valence bands. This leads to an enhancement in thermopower but also to an increase in electrical resistivity. Overall, the reduction in total thermal conductivity gives rise to improved ZT values in all substituted samples. The highest ZT value obtained in this study is 0.92 at 723 K for x = 1, which is comparable to that of other p-type bulk thermoelectric materials.  相似文献   

10.
The Bi2Te3?xSex family has constituted n‐type state‐of‐the‐art thermoelectric materials near room temperature (RT) for more than half a century, which dominates the active cooling and novel heat harvesting application near RT. However, the drawbacks of a brittle nature and Te‐content restricts the possibility for exploring potential applications. Here, it is shown that the Mg3+δSbxBi2?x family ((ZT)avg = 1.05) could be a promising substitute for the Bi2Te3?xSex family ((ZT)avg = 0.9–1.0) in the temperature range of 50–250 °C based on the comparable thermoelectric performance through a synergistic effect from the tunable bandgap using the alloy effect and the suppressible Mg‐vacancy formation using an interstitial Mn dopant. The former is to shift the optimal thermoelectric performance to near RT, and the latter is helpful to partially decouple the electrical transport and thermal transport in order to get an optimal RT power factor. The positive temperature dependence of the bandgap suggests this family is also a superior medium‐temperature thermoelectric material for the significantly suppressed bipolar effect. Furthermore, a two times higher mechanical toughness, compared with the Bi2Te3?xSex family, allows for a promising substitute for state‐of‐the‐art n‐type thermoelectric materials near RT.  相似文献   

11.
Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit ZT. We have developed a wet chemical process to fabricate Bi0.5Sb1.5Te3-based thermoelectric nanocomposites which include nanometer-sized metal particles. By simple solution mixing of metal acetate precursors and Bi0.5Sb1.5Te3 powders in ethyl acetate as a medium for homogeneous incorporation, it is possible to apply various types of metal nanoparticles onto the surfaces of the thermoelectric powders. Next, bulk Bi0.5Sb1.5Te3 nanocomposites with homogeneously dispersed metal nanoparticles were fabricated using a spark plasma sintering technique. The lattice thermal conductivities were reduced by increasing the long-wavelength phonon scattering in the presence of metal nanoparticles, while the Seebeck coefficients increased for a few selected metal-decorated nanocomposites, possibly due to the carrier-energy-filtering effect. Finally, the figure of merit ZT was enhanced to 1.4 near room temperature. This approach highlights the feasibility of incorporating various types of nanoparticles into an alloy matrix starting by wet chemical routes, which is an effective means of improving the thermoelectric performance of Bi-Te-based alloys.  相似文献   

12.
In this work, we highlight new materials processing developments and fabrication techniques for dispenser-printed thick-film single-element thermoelectric generators (TEG). Printed deposition techniques allow for low-cost and scalable manufacturing of microscale energy devices. This work focuses on synthesis of unique composite thermoelectric systems optimized for low-temperature applications. We also demonstrate device fabrication techniques for high-density arrays of high-aspect-ratio planar single-element TEGs. Mechanical alloyed (MA) n-type Bi2Te3 powders were prepared by taking pure elemental Bi and Te in 36:64 molar ratio and using Se as an additive. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to characterize the as-milled powders to confirm the Bi2Te3 phase formation and particle size below 50???m. Thermoelectric properties of the composites were measured from room temperature to 100°C. We achieved a dimensionless figure of merit (ZT) of 0.17 at 300?K for MA n-type Bi2Te3?Cepoxy composites with 2?wt.% Se additive. A 20 single-leg TEG prototype with 5?mm?×?400???m?×?120???m printed element dimensions was fabricated on a polyimide substrate with evaporated gold contacts. The prototype device produced a power output of 1.6???W at 40???A and 40?mV voltage for a temperature difference of 20°C.  相似文献   

13.
New equipment has been developed for evaluating the figure of merit, ZT, on the basis of the Harman method in the temperature range between room temperature and 650 K. In this temperature range, the sample holder in the vacuum chamber has a different construction as compared with the sample holder constructed for the temperature range below room temperature. Several issues that need to be considered, such as compensation for the thermal radiation effect, suppression of heat leakage from the lead wires, and the setup method for the lead wires on the sample, are examined in the considered temperature region. Evaluations of ZT are successfully made for typical thermoelectric materials, (Bi,Sb)2Te3 and CeFe3CoSb12. We then demonstrate that the influence of thermal radiation between the high- and low-temperature edges of the sample induced by the Peltier effect on the estimated value of ZT is negligible at around 600 K. Furthermore, the change in the thermoelectric properties due to repetition of the thermal cycle is studied, and a typical hysteresis behavior is observed in the considered thermoelectric materials. It is revealed that heating the sample to a high temperature causes a change in its thermoelectric properties, which one must take into account for practical applications of thermoelectric materials.  相似文献   

14.
Development of Skutterudite Thermoelectric Materials and Modules   总被引:2,自引:0,他引:2  
Multifilling with La, Ba, Ga, and Ti in p-type skutterudite and Yb, Ca, Al, Ga, and In in n-type skutterudite remarkably reduces their thermal conductivity, resulting in enhancement of their dimensionless figure of merit ZT to ZT?=?0.75 for p-type (La,Ba,Ga,Ti)1(Fe,Co)4Sb12 and ZT?=?1.0 for n-type (Yb,Ca,Al,Ga,In)0.7(Co,Fe)4Sb12. A thermoelectric module technology suitable for these skutterudites including diffusion barrier and electrode materials has been established. The diffusion barrier materials allow the electrode to coexist stably with the p/n skutterudites in the module??s working temperature range of room temperature to 600°C. Under conditions of hot/cold-side temperatures of 600°C/50°C, a skutterudite module with size of 50?mm?×?50?mm?×?7.6?mm exhibited generation performance of 32?W power output and 8% thermoelectric conversion efficiency.  相似文献   

15.
Since the 1960s, the TAGS system, namely (GeTe) x (AgSbTe2)1?x , with two specific compositions x = 0.8 and 0.85, known as TAGS-80 and TAGS-85, respectively, was identified as containing highly efficient p-type thermoelectric materials. Recently, another highly efficient p-type GeTe-rich composition, namely 3% Bi2Te3-doped Ge0.87Pb0.13Te, achieving thermoelectric properties comparable to TAGS-based solid solutions, was also reported. Since all of these compositions were obtained by different manufacturing approaches, a comparison between the transport and mechanical properties of these alloys, prepared by the same manufacturing techniques, is required to identify the advantages and disadvantages of these compositions for practical thermoelectric applications. In the current research, the thermoelectric and mechanical properties of three highly efficient GeTe-rich alloys, TAGS-80, TAGS-85, and 3% Bi2Te3-doped Ge0.87Pb0.13Te, following hot pressing, were investigated and compared. Maximal ZT values of ~1.75, ~1.4, and ~1.6 at 500°C were found for these compositions, respectively. Improvement of the mechanical properties was observed by increasing the GeTe content. The influence of the GeTe relative amount on the transport and mechanical properties was interpreted by means of the phase-transition temperatures from the low-temperature rhombohedral to the high-temperature cubic phases.  相似文献   

16.
The widespread application of thermoelectric (TE) technology demands high-performance materials, which has stimulated unceasing efforts devoted to the performance enhancement of Bi2Te3-based commercialized thermoelectric materials. This study highlights the importance of the synthesis process for high-performance achievement and demonstrates that the enhancement of the thermoelectric performance of (Bi,Sb)2Te3 can be achieved by applying cyclic spark plasma sintering to BixSb2–xTe3-Te above its eutectic temperature. This facile process results in a unique microstructure characterized by the growth of grains and plentiful nanostructures. The enlarged grains lead to high charge carrier mobility that boosts the power factor. The abundant dislocations originating from the plastic deformation during cyclic liquid phase sintering and the pinning effect by the Sb-rich nano-precipitates result in low lattice thermal conductivity. Therefore, a high ZT value of over 1.46 is achieved, which is 50% higher than conventionally spark-plasma-sintered (Bi,Sb)2Te3. The proposed cyclic spark plasma liquid phase sintering process for TE performance enhancement is validated by the representative (Bi,Sb)2Te3 thermoelectric alloy and is applicable for other telluride-based materials.  相似文献   

17.
The efficient thermoelectric materials (GeTe)0.85?x (Mn0.6Sn0.4Te)0.15(Bi2Te3) x (0 ≤ x ≤ 0.05), in which Bi2Te3 is nanopowder, were prepared by hot pressing. The effect of adding neutral nano-Bi2Te3 content on the thermoelectric properties of germanium telluride was investigated. With increasing x, the thermal conductivity of the prepared samples decreased significantly and the Seebeck coefficient declined slightly, while there was no obvious change in electrical conductivity. In both electrical conductivity and Seebeck coefficient curves at different x values, there are inflection points around 600 K. The maximum dimensionless figure of merit ZT of the prepared materials is 1.54, attained in the temperature range from 700 K to 750 K for x = 0.03. The x-ray diffraction (XRD) pattern shows that Bi2Te3 has been alloyed into the GeTe-MnTe-SnTe alloy, which is consistent with the high-resolution scanning electron microscopy (HRSEM) images. Adding nano-Bi2Te3 to GeTe-based materials could also increase their performance stability at high temperature as a result of decreasing the phase-transition temperature T c.  相似文献   

18.
The possibility of using an n-type Bi2?x SbxTe3 solid solution in thermoelectric refrigerators at T<200 K is considered. It is shown that, if the material under consideration is optimized for the above temperature region, the temperature dependence of the Seebeck coefficient α becomes less pronounced, and the crystal-lattice thermal conductivity κL decreases as compared to what is observed in a conventional n-Bi2Te3?y Sey solid solution. These factors and a high mobility of charge carriers μ0 bring about an increase in the parameter β ~ ZT, where Z is the thermoelectric efficiency.  相似文献   

19.
We present the effects of In4Se3 addition on thermoelectric properties of n-type Bi2Te2.7Se0.3. In this study, polycrystalline (In4Se3) x -(Bi2Te2.7Se0.3)1?x pellets were prepared by mechanical alloying followed by spark plasma sintering (SPS). The thermoelectric properties such as Seebeck coefficient and electrical and thermal conductivities were measured in the temperature range of 300 K to 500 K. Addition of In4Se3 into Bi2Te2.7Se0.3 resulted in segregation of In4Se3 phase within Bi2Te2.7Se0.3 matrix. The Seebeck coefficient of the (In4Se3) x -(Bi2Te2.7Se0.3)1?x samples exhibited lower values compared with that of pure Bi2Te2.7Se0.3 phase. This reduction of Seebeck coefficient in n-type (In4Se3) x -(Bi2Te2.7Se0.3)1?x is attributed to the formation of unwanted p-type phases by interdiffusion through the interface between (In4Se3) x and (Bi2Te2.7Se0.3)1?x as well as consequently formed Te-deficient matrix. However, the decrease in electrical resistivity and thermal conductivity with addition of In4Se3 leads to an enhanced thermoelectric figure of merit (ZT) at a temperature range over 450 K: a maximum ZT of 1.0 is achieved for the n-type (In4Se3)0.03-(Bi2Te2.7Se0.3)0.97 sample at 500 K.  相似文献   

20.
Field-activated pressure-assisted sintering (FAPAS) was applied to sinter Bi1.2Sb4.8Te9 thermoelectric materials under different conditions, including no-current sintering (NCS), low-density current sintering (LCS), and high-density current sintering (HCS). The effect of the current density on the final thermoelectric performance of the products was investigated. Applying a higher-density electric current and shorter dwell time can improve the thermoelectric performance of the sample by increasing its electric conductivity and decreasing its thermal conductivity. The maximum figure of merit ZT values of the NCS, LCS, and HCS samples were 0.46, 0.48, and 0.57, respectively. Therefore, applying a high-density electric current in the sintering process may be an effective way to obtain Bi1.2Sb4.8Te9 thermoelectric material with high ZT value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号