首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王锐  徐恒泳  李文钊 《石油化工》2005,34(Z1):431-433
采用脉冲反应方法考察了一系列Ce-Rh/Al2O3催化剂上CH4裂解积碳和CO2消炭反应性能,并采用TPR,CO2-TPSR对催化剂进行表征,研究了助剂的添加量和催化剂焙烧温度对Rh-CeO2相互作用的影响.实验结果表明,CeO2添加量的增加有利于提高催化剂的抗积碳性能,而焙烧温度升高使Rh-CeO2和Rh-Al2O3间相互作用增强,对催化剂的抗积碳性能不利.  相似文献   

2.
采用CO加氢反应、CO脉冲吸附和程序升温脱附(CO-TPD)以及程序升温还原技术(TPR),研究了Ti助剂对Rh-Mn-Li/SiO2催化剂上CO加氢合成C2含氧化合物的影响.CO加氢反应结果表明,微量Ti(0.0025%)的加入,催化性能得到明显改善.Ti的负载量增加至0.3%,催化性能下降.CO吸附,CO-TPD和TPR结果表明,添加微量Ti,增加了强吸附CO的量,且微量Ti的添加致使催化性能提高的原因可能与Ti削弱了Rh与Mn间的相互作用有关.  相似文献   

3.
采用浸渍法制备了一系列Ni负载量和焙烧温度不同的Ni/MgO催化剂,通过干重整反应对催化剂的性能进行评价,采用O_2-TPO与CO_2脉冲相结合的方法分析了反应后催化剂上积碳的含量,并利用XRD,SEM,H_2-TPR,CO_2-TPSR等分析方法对反应后催化剂上的积碳进行表征。实验结果表明,反应温度为600℃时催化剂上的积碳最严重,积碳主要为不规则的纳米尺度的石墨结构丝状碳,此温度下反应生成的积碳具有较高的反应活性;降低催化剂Ni负载量和提高焙烧温度均有利于形成NiO-MgO固溶体,增强Ni的分散及其与MgO载体的强相互作用,从而显著削弱Ni中心上CH4解离的反应速率,实现干重整反应过程的积碳控制。  相似文献   

4.
制备了不同焙烧温度的Rh-Mn-Fe-Li/SiO2催化剂,并采用XRD、N2吸附-脱附、氢氧滴定、TPR等方法对催化剂进行了表征,详细考察了催化剂催化CO加氢制C2含氧化合物的反应性能。研究结果显示,焙烧改变了Rh和助剂间的相互作用强度,从而影响了催化剂的活性和选择性。当焙烧温度为550℃,催化剂活性最高达19.4%,此时C2含氧化合物选择性达59.9%,时空收率达747.9g/(kg.h)。  相似文献   

5.
翁维正  万惠霖 《石油化工》2004,33(Z1):534-536
采用原位时间分辨红外光谱和原位显微喇曼光谱技术,对CH4/O2/Ar(2/1/45)混合气在SiO2和Al2O3负载的Rh、Ru、Ir等催化剂上反应的初级产物和催化剂表面物种进行了研究.在此基础上,辅之以改变催化剂预处理条件,脉冲反应-质谱和TPR等实验方法,对相应催化剂上的O2-和积碳物种浓度及其与甲烷部分氧化(POM)制合成气反应机理的关系进行了系统研究.实验结果表明,燃烧-重整机理是Ru/Al2O3和Ru/SiO2上CO和H2生成的主要途径,而由CH4的直接氧化生成CO和H2是Rh/SiO2上POM反应的主要途径;在新还原的Ir/SiO2上,CO是POM反应的初级产物,而在稳态条件下,催化剂表面积碳与CO2和/或H2O的反应以及未积碳表面的CH4燃烧-重整反应可能是CO生成的主要途径之一.造成Ru/SiO2、Ru/Al2O3、Rh/SiO2和Ir/SiO2等催化剂上POM反应机理差异的原因主要源于反应条件下催化剂表面氧物种(O2-)和积碳物种浓度的差异,而造成反应条件下催化剂表面氧物种浓度差异的本质可能与Ru、Rh和Ir等对氧亲合力及M-O键能的高低等因素有关.对Rh/Al2O3催化剂,POM反应的初级产物与催化剂的焙烧温度有关.在600℃焙烧的催化剂上,CO是POM反应的初级产物,而在900℃焙烧的催化剂上,CO2是反应的初级产物,造成两催化剂上POM反应机理差异的本质可能与不同温度焙烧的催化剂上Rh物种的可还原性不同并进而影响POM反应条件下催化剂表面氧物种的浓度有关.  相似文献   

6.
研究了Ni基催化剂在CH4/C3H8部分氧化-CO2重整反应中的催化性能和抗积碳性能。采用程序升温表面反应-质谱示踪、透射电子显微镜、热重-差热分析和Raman光谱等方法研究了反应后Ni基催化剂上的积碳物种和形态;采用程序升温氧化和程序升温加氢方法研究了Ni基催化剂上CH4裂解所形成的积碳。研究结果表明,O2可消除不与CO2反应的积碳;降低催化剂表面酸性有利于提高催化剂的抗积碳性能;CH4在Ni基催化剂上裂解形成3种氢含量不同的积碳Cα,Cβ,Cγ,800℃时H2只能消除反应活性较高的C,而O可消除全部积碳;C可形成类石墨碳,导致催化剂失活。  相似文献   

7.
采用浸渍法制备Co-Ru双金属F-T合成催化剂,通过对催化剂进行BET、XRD和TPR表征,考察了ZrO2负载量对催化剂性能的影响,并在固定床反应器中研究了对合成重质烃反应性能的影响。结果表明,载体γ-Al2O3 ZrO2改性没有引起催化剂还原温度的降低,但可降低载体与Co间的相互作用;随ZrO2含量的增加,催化剂中易还原Co物种量增加;在623~693K下进行还原,催化剂具有较高的还原程度,呈现出良好的合成重质烃反应性能。同时,载体γ-Al2O3用ZrO2改性,可形成Co-ZrO2界面,使CO容易离解。在原料气n(H2)/n(CO)=2.0、503K、1.5MPa和空速800h-1下,15%Co0.4%Ru8.0%ZrO2/γ-Al2O3催化剂CO的转化率为93.27%,C5+的选择性82.56%,链生长概率0.81。  相似文献   

8.
钴基催化剂上甲烷部分氧化与甲烷二氧化碳重整耦合反应   总被引:6,自引:4,他引:2  
用TPR、XRD和活性评价等手段研究了Co/SiO2 、Co/γ -Al2 O3和Co/α -Al2 O3催化剂上金属 -载体相互作用以及Co/α-Al2 O3催化剂上钴负载量对甲烷部分氧化与甲烷二氧化碳重整耦合反应性能的影响。实验结果表明 ,Co/γ -Al2 O3和Co/SiO2 催化剂活性很差的原因主要是金属 -载体的相互作用太强或太弱 ,只有金属 -载体相互作用适中的Co/α -Al2 O3催化剂才具有高的催化活性。在Co/α -Al2 O3催化剂中钴的负载量对催化性能有很大影响 ,当负载量低时催化剂易发生Co0 →CoAl2 O4 相转变而失活 ,而负载量太高时催化剂容易积碳 ,大颗粒的金属钴是积碳的活性中心  相似文献   

9.
考察了稀土助剂对催化剂的活性和抗积碳性能的影响;并测定了催化剂上的积碳量;运用CO-TPD、CO2-TPD、TPR、XPS和XRD等测试技术对催化剂进行表征,并与催化剂的抗积碳性能相关联.  相似文献   

10.
改性的Ni基催化剂上CO甲烷化性能的研究   总被引:2,自引:2,他引:0  
采用浸渍法制备了NiO/Al2O3,NiO/TiO2-Al2O3,NiO-La2O3/Al2O3,NiO-La2O3/TiO2-Al2O3催化剂,考察了4种催化剂的CO甲烷化性能,并利用TG-DTG方法表征催化剂表面的积碳量。实验结果表明,NiO/TiO2-Al2O3,NiO-La2O3/Al2O3,NiO-La2O3/TiO2-Al2O3催化剂,即TiO2和La2O3改性的NiO/Al2O3催化剂的CO甲烷化反应活性均有所提高,其中NiO-La2O3/TiO2-Al2O3催化剂的活性、稳定性和抗积碳能力最好;采用NiO-La2O3/TiO2-Al2O3催化剂,CO甲烷化反应的适宜条件为:反应温度450℃、反应压力1.5 MPa、GHSV=10 000 h-1,在此条件下,CO转化率为99.5%,CH4收率和选择性均为98.1%。  相似文献   

11.
通过甲烷干法重整,可实现甲烷与二氧化碳两种温室气体的有效利用,从而缓解环境压力,并且制得的合成气还可以应用于费托合成、羰基合成等工业途径。但由于甲烷干法重整存在催化剂积碳现象,导致催化剂失活、转化效率降低,对该方法的工业化应用产生了不利影响。为了解决积碳问题,提升催化剂的抗积碳性能,首先对不同催化剂作用下甲烷干法重整的反应机理以及积碳来源进行了综述,随后论述了催化剂的活性组分、载体以及助剂对积碳的影响。对反应机理的分析表明,虽然目前还没有一种反应机理能适用于所有催化剂,但可以确定的是,甲烷的深度裂解是产生积碳的主要原因。活性组分的负载量和催化剂组分之间的相互作用会改变活性组分分散度和对应的金属氧化物在反应中的氧化还原过程,进而对积碳量产生影响;载体的结构会影响催化剂的物理化学性质,并且其酸碱性也会改变催化剂反应性能,最终影响催化剂的抗积碳性能;助剂也有类似的效果。最后对用于甲烷干法重整反应的催化剂的发展前景进行了展望,为未来开发适用于甲烷干法重整工业生产的催化剂提供参考。  相似文献   

12.
采用沉淀法制备了Zr、Cr掺杂的CeO_2/Al_2O_3催化剂,利用BET,XRD,SEM,H_2-TPR等技术手段对催化剂进行了表征,考察了CO_2气氛下改性催化剂的乙苯氧化脱氢性能。表征结果显示,Cr改性后,催化剂的比表面积明显降低,团聚现象严重,反应后催化剂的积碳率较高,催化剂失活较快;Zr改性后,Zr进入Ce晶格中形成CeO_2-ZrO_2固溶体,改善了催化剂的烧结现象,催化剂的比表面积和还原性稍有降低,但热稳定性增强,对抑制积碳有积极作用。实验结果表明,Cr最佳负载量为3%(w),Zr最佳负载量为10%(w),Zr改性的催化剂在长时间的反应中具有更好的催化性能。  相似文献   

13.
通过实验分别研究了浸渍顺序、Mn负载量以及工况条件对Rh-Mn/SiO2催化剂上CO加氢合成乙醇反应的影响,并采用程序升温还原(TPR)技术对催化剂进行表征。结果表明:同时浸渍铑锰的催化剂的C2含氧化合物的时空产率达到255.8g/(kg·h),乙醇的选择性为15.39%,均高于分步浸渍的催化剂;Mn负载量影响Rh-Mn的相互作用,实验发现当催化剂w(Mn)为1.5%时,乙醇的选择性可升高到18.09%,同时可以抑制甲烷的生成。研究确定了Rh-Mn/SiO2催化CO加氢合成乙醇的最优工艺条件。  相似文献   

14.
采用浸溃法制备Co-Ru双金属F-T合成催化剂,通过对催化剂进行BET、XRD和TPR表征,考察了ZrO2负载量对催化剂性能的影响,并在固定床反应器中研究了对合成重质烃反应性能的影响.结果表明,载体γ-Al2O3,ZrO2改性没有引起催化剂还原温度的降低,但可降低载体与Co问的相互作用;随ZrO2含量的增加,催化剂中易还原Co物种量增加;在623~693K下进行还原,催化剂具有较高的还原程度,呈现出良好的合成重质烃反应性能.同时,载体γ-Al2O3用ZrO2改性,可形成Co-ZrO2界面,使CO容易离解.在原料气,n(H2)/n(CO)=2.0、503K、1.5MPa和空速800h-1下,15%Co0.4%Ru8.0%ZrO2O2/γ-Al2O3催化剂CO的转化率为93.27%,C5 的选择性82.56%,链生长概率0.81.  相似文献   

15.
CuO-CeO2-ZrO2催化剂制备及其对CO选择性氧化性能的研究   总被引:1,自引:1,他引:0  
采用柠檬酸溶胶-凝胶法制备一系列CuO—CeO2-ZrO2复合氧化物催化剂,利用微反应一色谱装置对催化剂CO选择性氧化的催化性能进行了评价,并用XRD、TPR等对样品进行了表征。考察了不同柠檬酸/硝酸盐(c/n)配比对催化剂反应性能的影响。结果表明,当c/n为1.75时,催化剂表现出最佳的催化性能,在140℃~190℃温度区间,CO转化率在99%以上,且保持相对较高的选择性。实验结果还表明,催化剂的焙烧温度对催化活性也有很大的影响,550℃焙烧获得的催化剂表面非晶相CuO负载量最高,相应的催化剂活性也较高。  相似文献   

16.
采用浸渍法制备了负载型MOx-SnO2(M=Ce,Co)催化剂,考察了它们的甲烷催化燃烧反应活性,结果表明MOx负载量为5%时反应活性最高.LR、XRD、H2-TPR和BET等结果表明,MOx不仅存在于催化剂的表面,而且可进入SnO2晶格,随着MOx负载量的提高,催化剂的比表面积增大,晶粒减小,进而影响到催化剂的物化性能和反应活性.  相似文献   

17.
针对甲烷化耦合焦油重整工艺的要求,设计并制备了铝酸钙水泥混合的白云石复合物负载Ni催化剂,在热重分析仪上测试了该催化剂的CO2吸收量和循环稳定性,在固定床反应器中考察了不同温度和Ni负载量下催化剂的甲烷化反应性能,并采用XRD、低温氮吸附等表征手段分析了催化剂的结构特性.结果表明,Ni负载量为8%的Ni/白云石催化剂具...  相似文献   

18.
采用浸渍法制备了Ni/TiO_2催化剂,用于邻硝基氯苯(o-CNB)加氢制备2,2′-二氯氢化偶氮苯(DHB),通过BET,XRD,SEM和活性评价等方法对催化剂的物相结构及催化性能进行了研究,考察了Ni/TiO_2催化剂镍负载量、反应温度、碱用量等工艺条件对催化加氢制备DHB的影响。结果表明,催化剂中镍负载量为30%、反应温度353~363 K、碱与邻硝基氯苯质量比为0.2时,o-CNB的转化率及DHB的选择性均高于99.0%;影响Ni/TiO_2催化剂活性及选择性的主要因素是催化剂的活性比表面积及载体TiO_2与金属镍之间的强相互作用。  相似文献   

19.
Co-MCM-41分子筛的制备、表征及催化性能   总被引:1,自引:0,他引:1  
研究合成掺杂不同Co含量的Co-MCM-41分子筛.并在常压连续流动固定床微反应器上考察它们对CO2催化氧化乙烷脱氢制乙烯反应的性能.结果表明,3%Co-MCM-41活性最高.Co的掺杂量、反应温度等条件对该催化反应均有一定影响.引入CO2可消除积碳对催化剂活性的影响,有利于催化反应的进行.利用XRD和IR技术对催化剂进行表征.  相似文献   

20.
赵虹  郭建军楼辉 《石油化工》2004,33(Z1):211-212
研究了LaNiO3催化剂对于甲烷裂解/CO2消碳循环反应的活性.实验表明,在LaNiO3经过还原以后得到的催化剂表面,甲烷裂解生成H2和CO2与积碳反应生成CO这一循环过程至少可以重复进行2次,而且CO2对于消除积碳和催化剂的再生效果有增强的趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号