首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of casting defects on the room temperature fatigue performance of a Sr-modified A356-T6 casting alloy has been studied using un-notched polished cylindrical specimens. The numbers of cycles to failure of materials with various secondary arm spacings (SDAS) were investigated as a function of stress amplitude, stress ratio, and casting defect size. To produce pore-free samples, HIP-ed and Densal™ treatments were applied prior to the T6 heat treatment. It was observed that casting defects have a detrimental effect on fatigue life by shortening not only the crack propagation period, but also the initiation period. Castings with defects show at least an order of magnitude lower fatigue life compared to defect-free ones. The decrease in fatigue life is directly correlated to the increase of defect size. HIP-ed alloys show much longer fatigue lives compared to non-HIP-ed ones. There seems to exist a critical defect size for fatigue crack initiation, below which fatigue crack initiates from other competing initiators such as eutectic particles and slip bands. A fracture mechanics approach has been used to determine the number of cycles necessary to propagate a fatigue crack from a casting defect to final failure. Fatigue life of castings containing defects can be quantitatively predicted using the size of the defects. Moreover, the fatigue fracture behavior of aluminum castings is well described by Weibull statistics. Crack originating from different defects (such as porosity and oxide films) can be readily identified from the Weibull modulus and the characteristic fatigue life. Compared with oxide films, porosity is more detrimental to fatigue life.  相似文献   

2.
Fatigue potential has been studied in cast aluminum alloys with regard to the fatigue crack initiation mechanism at the casting defects, particularly surface and subsurface defects. The significance of facets is interpreted as the presence of defects in the interior of castings. Furthermore, two varieties of facets have been identified, one originating as a dendrite-straightened bifilm (type I facet) and the other originating from a slip plane mechanism around casting defects (type II facet). The fatigue life potential of castings is reexamined based on the involvement of defects during the formation of both types of facets. It is proposed that the true fatigue life potential of defect free castings has yet to be observed, i.e., if castings can be produced without defects, then their fatigue performance will be significantly higher than even the best performances observed so far.  相似文献   

3.
The change in fatigue failure initiation sites from a surface to subsurface location for two P/M nickel-based superalloys is analyzed. In particular the influences of defect size, shape, and population on the elevated temperature fatigue processes are assessed. The analysis shows that at high strain ranges, crack initiation occurs rapidly, and crack propagation rates determine the fatigue life and failure site. As a result, defect location (related to population) and size are the more important parameters. At lower strain ranges, however, crack initiation is critical in determining the failure origin, and this is primarily controlled by defect shape. Formerly with Metals and Ceramics Division, Air Force Materials Laboratory, Wright-Patterson AFB, OH.  相似文献   

4.
The addition of Kaowool fibers substantially increases the fatigue strength of 339 aluminum at 300 °C. However, the fatigue life of these composites is limited by the presence of Kaowool “shot” particles, which act as crack initiation sites. An elastic analysis of the stress concentrations associated with this type of defect shows that a crucial parameter is the distance of the particle from the free surface. As the distance from the surface decreases, the stress concentration factor increases substantially and attains maximum value when a small portion of the particle has been removed by machining. The relationship between the distance from the surface and the stress concentration factor is in excellent agreement with the particle geometries observed at fatigue crack initiation sites.  相似文献   

5.
杜洪奎  杜睿捷 《钢铁》2015,50(3):64-67
 对压力容器与压力管道用钢Q345R在低周疲劳下微孔([?]40~200 μm)的裂纹萌生与扩展规律进行了研究。研究表明小裂纹的萌生主要机理为滑移带启裂,并且由剪应力起主导作用。微缺陷的尺寸、应力幅等因素对疲劳寿命均有影响显著,当应力幅值较低时,微孔的尺寸对疲劳寿命有明显影响。当应力幅值水平较高时,小孔直径对疲劳寿命的影响则不敏感。微观缺陷尺寸存在临界值,当缺陷尺寸大于临界值时,疲劳寿命下降很快。在同一应力幅水平下,裂纹萌生寿命与疲劳总寿命的比值[(Nt/Nf)]与微孔尺寸没有关系,本试验的低周疲劳下约为10%~25%。  相似文献   

6.
为了对飞机机翼缘条紧固孔细节原始疲劳质量进行评估,本文首先对飞机机翼缘条结构中常用的BXXX铝合金紧固孔试件分别开展了高、中、低3种应力水平下的疲劳试验,通过断口判读和反推得到3组关于裂纹长度a和疲劳寿命t的(a?t)数据,在此基础上应用当量初始缺陷尺寸(EIFS)控制方程对每个试件的EIFS值进行计算并初步评估,验证了在不同应力水平下紧固孔结构细节的EIFS无显著性差异;得到了紧固孔结构细节的裂纹萌生时间(TTCI)分布,在指定应力水平下对紧固孔结构细节95%置信水平下的经济寿命进行预测,并与设计寿命进行对比,提出了一种不同超越概率P下的结构细节当量初始缺陷尺寸模型,基于给定5%的裂纹超越概率,对结构细节的通用EIFS分布进行评估。通过以上对飞机机翼缘条紧固孔细节原始疲劳质量的三重评估,得到综合评估结果:飞机机翼缘条紧固孔细节原始疲劳质量满足要求。   相似文献   

7.
本文旨在研究夹杂-细晶粒区-鱼眼诱发疲劳失效的超长寿命预测模型.基于Cr-Ni-W合金钢疲劳试验结果,结合局部应力-寿命法和位错-能量法,分别构建了局部裂纹萌生寿命模型(LCIL)和考虑夹杂及细晶粒区影响的裂纹萌生寿命模型(IFCIL),并与Tanaka-Mura模型(T-M)进行了对比分析.其次,分别对细晶粒区内的小裂纹扩展行为和细晶粒区外鱼眼内的长裂纹扩展行为进行建模,最终形成了包含裂纹萌生和扩展在内的全寿命预测模型.结果表明,考虑夹杂及细晶粒区影响的裂纹萌生寿命模型(IFCIL)有较高的预测精度;对应细晶粒区的裂纹萌生寿命几乎等同于全寿命;裂纹扩展寿命仅占据全寿命很小的一部分;预测结果全部处于2倍偏差以内,即全寿命模型可有效地用于夹杂-细晶粒区-鱼眼诱发失效的超长寿命预测.  相似文献   

8.
In order to determine the effects of weld repair on fatigue life of titanium-6Al-4V castings, a series of specimens was exposed to variations in heat treatment, weld procedure, HIP cycle, cooling rate, and surface finish. The results indicate that weld repair is not detrimental to HCF properties as fatigue cracks were located primarily in the base metal. Fine surface finish and large colony size are the primary variables improving the fatigue life. The fusion zone resisted fatigue crack initiation due to a basketweave morphology and thin grain boundary alpha. Multipass welds were shown not to affect fatigue life when compared with single pass welds. A secondary HIP treatment was not detrimental to fatigue properties, but was found to be unnecessary.  相似文献   

9.
A theory of fatigue crack initiation at inclusions   总被引:5,自引:0,他引:5  
The dislocation dipole accumulation model for fatigue crack initiation previously proposed by the authors is extended to an analysis of the fatigue strength reduction due to inclusions in high strength alloys. The initiation of a fatigue crack is determined by an energy criterion under the assumption that the crack initiation takes place when the self strain energy of dislocation dipoles accumulated at the damaged part in the material reaches a critical value. Explicit formulae for the crack initiation criterion in several cases are derived as functions of the applied stress, the inclusion size, the slip band shape, and the shear moduli of the inclusion and matrix. The following three types of fatigue crack initiation at inclusions are considered: the slip-band crack emanating from a debonded inclusion, the inclusion cracking due to impinging of slip bands, and the slip-band crack emanating from an uncracked inclusion. The first mechanism was reported to be operative in high strength steels, while the last two mechanisms were reported in high strength aluminum alloys. The present theoretical results are in good agreement with the experimental data published for each case of fatigue crack initiation at inclusions.  相似文献   

10.
Ultrasonic fatigue tests are carried out on aluminum alloy 6061-T6 in order to analyze the fatigue endurance behavior under artificial pre-corrosion attack by hydrochloric acid for the pH concentrations of 0.47 and 0.80. The pre-corrosion attack is used to simulate the long-time environmental effect and the corresponding decay of fatigue life in regard to non-corroded specimens. Experimental results show that ultrasonic fatigue endurance under these two degrees of pre-corrosion attack decreases dramatically. Furthermore, it is observed that crack initiation is frequently associated with one or several pre-corrosion pitting holes at the specimen surface. Pitting holes are assumed to be semi-hemispherical and the stress concentration factors are evaluated taking into account the size and proximity of two crack initiation pitting holes. The crack growth rates are obtained for the pre-corroded specimens and compared to the non-corroded specimen. Finally, conclusions are listed concerning ultrasonic fatigue endurance of testing specimens, together with the fracture surfaces, crack paths, and crack growth rates.  相似文献   

11.
Engineering alloys such as Ni-based alloys, Al-alloys, and steels often contain non-metallic inclusions in their microstructures. These inclusions, which include oxide particles, carbides, and intermetallic particles, are introduced during component manufacturing processes such as casting, powder-metallurgy, or additive manufacturing methods. The presence of inclusions in the microstructure can promote fatigue crack nucleation by competing against slipband nucleation and reduce fatigue life performance of an engineering component. While it has been reported in many occasions, the competition between fatigue crack nucleation at inclusions and slipbands is still not well understood. In this article, the conditions for the concurrent occurrence of fatigue crack nucleation at inclusions and slipbands are analyzed theoretically. The analysis indicates that there exists a critical inclusion size (diameter) below which there is no fatigue life debit due to crack initiation at inclusions and above which a transition from slip-induced to inclusion-induced crack nucleation occurs. The low-cycle fatigue life model is applied to Ni-based superalloys and the model predictions are compared against experimental data from the literature to assess the dependence of the critical inclusion size on the slip morphology, grain size of the matrix, and the shear modulus of the inclusion.  相似文献   

12.
13.
Axial fatigue tests were performed on a 7075-T6 aluminum alloy in tension-compression and under superimposed positive mean stresses in dry air and in aqueous 0.5N NaCl solution. Both corrosive environments and positive mean stresses resulted in lower fatigue lives but no interaction between these variables was observed. Crack initiation in air occurred at electropolish pits at inclusion/alloy interfaces and propagated primarily in a Stage I (crystallographic) mode. Crack initiation in NaCl solutions occurred at heavily corroded regions surrounding non-metallic inclusions and propagated in a cleavage mode normal to the direction of applied stress. The relative number of cycles to crack initiation is shown to be a function of the magnitude of cyclic stress but not of mean stress. Similarly, the percentage of reduction in fatigue life due to corrosive environments is approximately constant at all mean stress levels. These data indicate that fatigue crack initiation is primarily related to mobile dislocations associated with cyclic deformation. Crack propagation on the other hand appears to be controlled by the maximum applied stress. A model for environment assisted cracking is presented which suggests that hydrogen induced cleavage is responsible for the degradation in fatigue properties of this alloy. Formerly Research Assistant, Materials Division, Rensselaer Polytechnic Institute, Troy, N. Y. 12181.  相似文献   

14.
Microstructural origins of the variability in fatigue lifetime observed in the high- and very-high-cycle fatigue regimes in titanium alloys were explored by examining the role of microstructural heterogeneity (neighborhoods of grains with similar crystallographic orientations or microtexture) on the initiation and early growth of fatigue cracks in Ti-6246. Ultrasonic fatigue of focused ion beam (FIB) micronotched samples was used to investigate long lifetime (107 to 109) behavior for two microstructural conditions: one with microtexture and one without microtexture. For specimens containing notches of nominally 20???m in length, fatigue crack initiation in the microtextured material was most likely to occur from notches placed in neighborhoods with a microtexture favorably oriented for easy basal slip. Initiation lifetimes in the untextured material with similar sized notches were, on average, slightly greater than those for the microtextured condition. In both materials, the crack-initiation lifetime from micronotches of length 2c?>?20???m was a very small fraction (<1?pct) of the measured fatigue lifetime for unnotched specimens. Furthermore, in the microtextured condition, small fatigue crack propagation rates did not correlate with the microtextured regions and did not statistically differ from average small crack growth rates in the untextured material. As the micronotch size was reduced below 20???m, fatigue crack initiation was controlled by microstructure rather than by FIB-machined defects. Finally, predictions of the fraction of life consumed in small and long fatigue crack growth from preexisting cracks nominally equivalent in size to the micronotches was compared with the measured fatigue life of unnotched specimens. The predicted range of lifetimes when factoring in the experimentally observed variability in small fatigue crack growth, only accounted for 0.1?pct of the observed fatigue lifetime variability. These findings indicate that in the high-and very-high-cycle fatigue regimes, fatigue life is dominated by crack initiation and that the variation in the initiation lifetime is responsible for the observed variation in total fatigue life.  相似文献   

15.
The fatigue behavior of a naturally aged powder metallurgy 2xxx series aluminum alloy (Alcoa MB85) and a composite made of this alloy with 15 vol pct SiCp, has been investigated. Fatigue lives were determined using load-controlled axial testing of unnotched cylindrical samples. The influence of mean stress was determined at stress ratios of −1, 0.1, and 0.7. Mean stress had a significant influence on fatigue life, and this influence was consistent with that normally observed in metals. At each stress ratio, the incorporation of SiC reinforcement led to an increase in fatigue life at low and intermediate stresses. When considered on a strain-life basis, however, the composite materials had a somewhat inferior resistance to fatigue. Fatigue cracks initiated from several different microstructural features or defect types, but fatigue life did not vary significantly with the specific initiation site. As the fatigue crack advanced away from the fatigue crack initiation site, increasing numbers of SiC particles were fractured, in agreement with crack-tip process zone models. Formerly Graduate Student, Department of Materials Science and Engineering, The University of Michigan  相似文献   

16.
The low cycle fatigue behavior of IMI-685 alloy withβ-processed andβ-annealed microstructures was investigated. Material with large colony structure ofα-platelets oriented in the same direction, resulting from insufficientβ-work and slow cooling rate from theβ-phase region, exhibited lower fatigue strength than material with basketweave arrangement of theα-platelets. Most of the fatigue crack initiation and propagation processes were dominated by cracking related to intense shear across a colony. The size of the shear related initial cracks could be limited by reducing the colony size, which resulted in an increased fatigue strength. In the large colony microstructure, it was possible to cause a substantial fatigue life debit by introducing a small planar defect on the surface or by applying 5 min dwell time at peak load. The combination of planar defect and dwell time caused the highest life debit. Residual porosity of negligible size caused, in the large colony microstructure, a fairly large, subsurface, cleavage-like planar defect that participated in the initiation of fatigue cracks. Due to its appearance on the fracture surface, the defect which is characterized in detail in the paper, was named cleavage rosette. J. A. HALL, formerly with the Air Force Materials Laboratory  相似文献   

17.
18.
Investment-cast titanium components are becoming increasingly common in the aerospace industry due to the ability to produce large, complex, one-piece components that were previously fabricated by mechanically fastening multiple pieces together. The fabricated components are labor-intensive and the fastener holes are stress concentrators and prime sites for fatigue crack initiation. The castings are typically hot-isostatically-pressed (HIP) to close internal porosity, but have a coarse, fully lamellar structure that has low resistance to fatigue crack initiation. The as-cast + HIP material exhibited 1- to 1.5-mm prior β grains containing a fully lamellar α + β microstructure consistent with slow cooling from above the β transus. Friction stir processing (FSP) was used to locally modify the microstructure on the surface of an investment-cast Ti-6Al-4V plate. Friction stir processing converted the as-cast microstructure to fine (1- to 2-μm) equiaxed α grains. Using micropillars created with a dual-beam focused ion beam device, it was found that the fine-grained equiaxed structure has about a 12 pct higher compressive yield stress. In wrought products, higher strength conditions are more resistant to fatigue crack initiation, while the coarse lamellar microstructure in the base material has better fatigue crack growth resistance. In combination, these two microstructures can increase the fatigue life of titanium alloy castings by increasing the number of cycles prior to crack initiation while retaining the same low-crack growth rates of the colony microstructure in the remainder of the component. In the current study, high-cycle fatigue testing of investment-cast Ti-6Al-4V was performed on four-point bend specimens. Early results show that FSP can increase fatigue strength dramatically. This article is based on a presentation given in the symposium entitled “Materials Behavior: Far from Equilibrium” as part of the Golden Jubilee Celebration of Bhabha Atomic Research Centre, which occurred December 15–16, 2006 in Mumbai, India.  相似文献   

19.
The fatigue process consists, from the engineering point of view, of three stages: crack initiation, fatigue crack growth, and the final failure. It is also known that the fatigue process near notches and cracks is governed by local strains and stresses in the regions of maximum stress and strain concentrations. Therefore, the fatigue crack growth can be considered as a process of successive crack increments, and the fatigue crack initiation and subsequent growth can be modeled as one repetitive process. The assumptions mentioned above were used to derive a fatigue crack growth model based, called later as the UniGrow model, on the analysis of cyclic elastic–plastic stresses–strains near the crack tip. The fatigue crack growth rate was determined by simulating the cyclic stress–strain response in the material volume adjacent to the crack tip and calculating the accumulated fatigue damage in a manner similar to fatigue analysis of stationary notches. The fatigue crack growth driving force was derived on the basis of the stress and strain history at the crack tip and the Smith–Watson–Topper (SWT) fatigue damage parameter, D = σmaxΔε/2. It was subsequently found that the fatigue crack growth was controlled by a two-parameter driving force in the form of a weighted product of the stress intensity range and the maximum stress intensity factor, ΔK p K max 1?p . The effect of the internal (residual) stress induced by the reversed cyclic plasticity has been accounted for and therefore the two-parameter driving force made it possible to predict the effect of the mean stress including the influence of the applied compressive stress, tensile overloads, and variable amplitude spectrum loading. It allows estimating the fatigue life under variable amplitude loading without using crack closure concepts. Several experimental fatigue crack growth datasets obtained for the Al 7075 aluminum alloy were used for the verification of the proposed unified fatigue crack growth model. The method can be also used to predict fatigue crack growth under constant amplitude and spectrum loading in various environmental conditions such as vacuum, air, and corrosive environment providing that appropriate limited constant amplitude fatigue crack growth data obtained in the same environment are available. The proposed methodology is equally suitable for fatigue analysis of smooth, notched, and cracked components.  相似文献   

20.
The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of −1, 0.1, and 0.2. The secondary dendrite arm spacing (SDAS) and porosity (maximum size and density distribution) were quantified in the directionally solidified casting alloy. Using scanning electron microscopy, we observed that cracks initiate at near-surface porosity, at oxides, and within the eutectic microconstituents, depending on the SDAS. When the SDAS is greater than ∼ 25 to 28 μm, the fatigue cracks initiate from surface and subsurface porosity. When the SDAS is less than ∼ 25 to 28 μm, the fatigue cracks initiate from the interdendritic eutectic constituents, where the silicon particles are segregated. Fatigue cracks initiated at oxide inclusions whenever they were near the surface, regardless of the SDAS. The fatigue life of a specimen whose crack initiated at a large eutectic constituent was about equal to that when the crack initiated at a pore or oxide of comparable size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号