首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
基于粒子群支持向量机的短期电力负荷预测   总被引:9,自引:3,他引:9       下载免费PDF全文
在分析支持向量机SVM(Support VectorM ach ine)回归估计方法参数性能的基础上,提出粒子群算法PSO(Partic le Swarm Optim ization)优化参数的SVM短期电力负荷预测模型。PSO算法是一种新型的基于群体智能的随机优化算法,简单易于实现且具有更强的全局优化能力。用所建立的负荷预测模型编制的M atlab仿真程序,对某实际电网进行了短期负荷预测,结果表明预测精度更高。  相似文献   

2.
短期负荷预测的支持向量机方法研究   总被引:110,自引:30,他引:110  
提出了一种基于支持向量机(SVM)理论的电力系统短期负荷预测方法。该方法采用结构风险最小化原则(SRM),与采用经验风险最小化原则(ERM)的传统神经网络方法相比,具有更好的泛化性能和精度,减少了对经验的依赖。SVM算法以统计学习理论作为其理论基础,它的训练等价于解决一个二次规划问题。为了提高负荷预测精度,文中在训练数据集中采用了负荷数据和温度数据。通过和多层BP神经网络进行比较的试验,结果证明了其在短期负荷预测中的有效性。  相似文献   

3.
为了快速准确高效地预测短期电力负荷,提出了一种带扩展记忆的粒子群优化技术(PSOEM)和支持向量回归(SVR)相结合,以历史负荷数据、气象因素等作为输入的基于PSOEM-SVR的短期电力负荷预测方法。PSOEM比传统PSO收敛速度更快精度更高具有更强的寻优能力,用它来优化组合核函数SVR参数,减少了SVR参数设置的盲目低效性,获得较优的PSOEM-SVR预测模型。该模型的实例仿真预测结果表明该方法比BP神经网络具有更好的准确性和稳定性,平均绝对误差控制在1%以内。  相似文献   

4.
姜妍  兰森  孙艳学 《黑龙江电力》2012,35(5):349-352
针对当今人工智能短期负荷预测方法存在的缺陷,提出了一种最小二乘支持向量机(LS-SVM)短期负荷预测方法,即建立最小二乘支持向量机(LS-SVM)回归模型。在选取该模型训练样本时,为了提高预测精度,采用灰色关联投影法来选取相似日。同时,针对标准粒子群优化算法易陷入局部最优的缺点,提出自适应变异粒子群优化算法来选择最小二乘向量机的参数,从而提高了负荷预测精度,避免了对模型参数的盲目选择。仿真结果分析表明,该方法有效、可行。  相似文献   

5.
支持向量机方法已经非常成熟的应用在短期负荷预测领域,它在选取历史日期进行模型训练的时候通常选取距离预测日相近的一段日期,而没有考虑这段时间气象条件、星期类型、节假日造成的影响,使得所建立的模型并不能完全的反映预测日的特征。提出了基于一种基于数据挖掘技术的支持向量机负荷预测方法,该方法提出了预测模型样本选取的新颖思路,首先采用层次聚类法对历史日负荷进行聚类,利用层次聚类得到的分类结果建立决策树,根据待预测日的属性在决策树中查询得到支持向量机预测模型输入的历史负荷,建立支持向量机预测模型并对待预测日的负荷进行预测。实例中负荷数据采用浙江省某地级市的历史负荷,用新方法对该地区的日96点负荷进行预测,并将该算法与传统的支持向量机算法进行比较,文中提出的方法解决了传统的基于支持向量机方法训练日期选取不能反映待预测日特征的问题,故本算法结果具有较高预测精度。  相似文献   

6.
基于免疫支持向量机方法的电力系统短期负荷预测   总被引:11,自引:3,他引:11  
吴宏晓  侯志俭 《电网技术》2004,28(23):47-51
在对支持向量机(Support Vector Machines,SVM)方法的参数性能进行分析的基础上,提出了一种免疫支持向量机方法来预测电力系统短期负荷,其中利用免疫算法来优化支持向量机方法的参数.免疫算法是根据人类或其它高等动物免疫系统的机理而设计的,通过仿真抗原和抗体之间的相互作用过程,有效地克服了未成熟收敛现象,提高了群体的多样性.电力系统短期负荷预测的实际算例表明,与支持向量机方法相比,本文所提免疫支持向量机方法具有更高的预测精度.  相似文献   

7.
基于最小二乘支持向量机的短期负荷预测   总被引:5,自引:4,他引:5  
提出了结合粗糙集(rough sets,RS)理论和遗传算法(genetic algorithm,GA)的最小二乘支持向量机(least squares support vector machines,LS-SVM)短期负荷预测模型和算法。由于影响负荷预测精度的因素众多, 该模型采用RS理论进行历史数据的预处理,对各条件属性进行约简分析。属性约简采用GA进行寻优,以确定与负荷密切相关的因素,作为LS-SVM的有效输入变量。在预测过程中,通过GA对LS-SVM的模型参数进行自适应寻优,从而提高负荷预测精度,避免LS-SVM对经验的依赖以及预测过程中对模型参数的盲目选择。采用上述方法对山东电网负荷进行了预测分析,结果证明了该方法的有效性。  相似文献   

8.
介绍了支持向量机(SVM)方法及其在电力系统负荷预测中的应用。SVM以统计学理论为理论基础,采用结构最小化(SRM)原则,具有收敛速度快、全局最优等优点。选取RBF函数作为核函数,实际算例表明,预测精度优于时间序列及BP神经网络等方法。  相似文献   

9.
提出一种改进的基于离散小波变换和支持向量机的短期负荷预测方法。运用离散小波变换将负荷时间序列分解为高低频子序列,采用目前较为成熟的支持向量机方法,选择适当的参数对每个序列进行滚动式的单支预测,最后将各分支预测结果相加最终实现负荷预测。实例中负荷数据采用四川省某地区的历史负荷,对该地区的日96点负荷进行全年预测,并将该算法与支持向量机算法进行比较,结果表明,该算法具有较高预测精确性。  相似文献   

10.
基于小波变换和支持向量机的电力系统短期负荷预测   总被引:1,自引:0,他引:1  
提出一种改进的基于离散小波变换和支持向量机的短期负荷预测方法.运用离散小波变换将负荷时间序列分解为高低频子序列,采用目前较为成熟的支持向量机方法,选择适当的参数对每个序列进行滚动式的单支预测,最后将各分支预测结果相加最终实现负荷预测.实例中负荷数据采用四川省某地区的历史负荷,对该地区的日96点负荷进行全年预测,并将该算法与支持向量机算法进行比较,结果表明,该算法具有较高预测精确性.  相似文献   

11.
提出了一种新颖的电力空间负荷分布预测模型,该方法首先对各类负荷的影响因素进行分析并分别建模预测;而后将选定区域划分成等面积小区,利用主成分分析法对小区空间信息进行处理,从而形成支持向量机的训练样本集;在此基础上用训练好的支持向量机计算待预测区域小区的属性值,并按照各类用地类型排序.根据预测结果,结合待预测区域的整体发展规划,给出待预测区域各类负荷增量;最后,结合各类负荷密度预测值、各类用地发展总量、各类用地发展排序,给出空间负荷预测值.实例验证了本文方法的有效性.  相似文献   

12.
在对支持向量机(SVM)方法进行分析的基础上,提出了一种免疫加权支持向量机(IWSVM)方法来预测电力系统短期负荷。其中根据各样本重要性的不同,引入了加权支持向量机方法,然后利用免疫规划算法对其进行参数优化。免疫规划算法利用浓度和个体多样性保持机制进行免疫调节,有效地克服了未成熟收敛现象,提高了群体的多样性。电力系统短期负荷预测的实际算例表明,与支持向量机方法相比,所提免疫加权支持向量机方法具有更高的预测精度。  相似文献   

13.
理论研究中基于支持向量机的负荷预测的精度已得到了验证,但实际应用中还与其对当地负荷特性的适应性及工作人员对相应软件的应用密切相关,需要进一步验证并解决可能出现的问题。因此,为了将支持向量机预测法应用到新疆电网实际工作中并确保其精度,笔者通过实例将向量机预测法与BP神经网络预测法作了比较,其结果证明了该方法对新疆电网负荷特性具有更好的适应性,同时,重点探讨了在实际应用中出现训练集与预测集存在交集时预测精度与数据重合程度间的非线性关系,并指出预测时需对数据重合程度不同的训练集与预测集的组合进行选择,以确保预测精度。  相似文献   

14.
基于支持向量机的电力负荷组合预测模型   总被引:4,自引:3,他引:4  
给出了一种基于支持向量机(SVM)的组合预测模型,利用各种方法的预测结果作为SVM的输入,实际负荷值作为SVM的输出,并采用LIBSVM算法和径向基核函数对SVM进行训练,训练后的SVM便具有预测能力。最后的仿真结果表明,基于SVM的组合预测模型的预测精度不仅高于任一单一模型,且高于固定权系数组合预测模型。  相似文献   

15.
提出了基于小波支持向量机(WSVM)与相空间重构(PSRT)相结合的电力系统短期负荷预测(STLF)模型。使用小波核函数(WKF)构建相应的WSVM,并且用云遗传算法(CGA)对相关参数进行优化。在分析负荷时间序列的混沌特性基础上,对序列进行了PSRT,将相空间中的向量点作为WSVM的输入。该方法不考虑气象和节假日等条件,只使用历史负荷数据。仿真结果表明,新算法有较好的精确度和有效性,具有一定的实用价值。  相似文献   

16.
提出了基于小波支持向量机(WSVM)与相空间重构(PSRT)相结合的电力系统短期负荷预测(STLF)模型.使用小波核函数(WKF)构建相应的WSVM,并且用云遗传算法(CGA)对相关参数进行优化.在分析负荷时间序列的混沌特性基础上,对序列进行了PSRT,将相空间中的向量点作为WSVM的输入.该方法不考虑气象和节假日等条件,只使用历史负荷数据.仿真结果表明,新算法有较好的精确度和有效性,具有一定的实用价值.  相似文献   

17.
电力负荷是具有一定的周期性和随机性的非平稳时间序列,传统的预测方法是建立在负荷是平稳序列的前提下,难以精确的预测。为了进行有效的预测,提高预测精度,提出将经验模式分解EMD(Empirical Mode Decomposition)和最小二乘支持向量机LS-SVM(Least Square Support Vector Machine)相结合对短期负荷进行预测。首先,运用EMD将负荷序列自适应地分解成一系列不同尺度的本征模式分量IMF(intrinsic mode function),分解后的分量突出了原负荷的局部特征,能更明显地看出原负荷序列的周期项、随机项和趋势项;然后,根据各个IMF的变化规律,采用合适的核函数和超参数构造不同的LS-SVM进行预测,最后对各分量的预测值进行相加得到最终的预测值。仿真试验表明,此方法具有较高的精度和较强的推广能力。  相似文献   

18.
基于经验模式分解和最小二乘支持向量机的短期负荷预测   总被引:1,自引:0,他引:1  
电力负荷是具有一定的周期性和随机性的非平稳时间序列,传统的预测方法是建立在负荷是平稳序列的前提下,难以精确的预测.为了进行有效的预测,提高预测精度,提出将经验模式分解EMD(Empirical Mode Decomposition)和最小二乘支持向量机LS-SVM(Least Square Support Vector Machine)相结合对短期负荷进行预测.首先,运用EMD将负荷序列自适应地分解成一系列不同尺度的本征模式分量IMF(intrinsic mode function),分解后的分量突出了原负荷的局部特征,能更明显地看出原负荷序列的周期项、随机项和趋势项;然后,根据各个IMF的变化规律,采用合适的核函数和超参数构造不同的LS-SVM进行预测,最后对各分量的预测值进行相加得到最终的预测值.仿真试验表明,此方法具有较高的精度和较强的推广能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号