首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
 采用数值模拟和实验相结合的方法,对一种单入口双进气道旋风分离器内的紊流过程进行了研究。计算得到的旋风分离器内的压力降与实验数据较为吻合,验证了所采用的模型和计算方法的正确性。与普通单入口旋风分离器相比,相同处理量时,此种旋风分离器在不降低分离效率的情况下可以使压力降降低40%左右;通过特殊的双进气道设计,基本消除了普通单入口旋风分离器内旋转中心与几何中心不重合产生的涡核摆动现象,有利于提高旋风分离器的分离效率。在 FCC 沉降器内采用该旋风分离器,不仅可以大幅度降低压力降,减少能耗,而且由于在旋风分离器内形成了对称流场,有利于减少 FCC 沉降器顶旋升气管外壁的结焦。  相似文献   

2.
在蜗壳式旋风分离器环形空间流场测量和分析的基础上 ,分析了重油催化裂化装置沉降器顶旋风分离器升气管外壁 0°~ 90°~ 180°(以入口处为 0°)部位结焦的原因。由于进口气流在升气管外壁的绕流流动以及和内部环流的交汇作用 ,在升气管管壁表面形成了低速的“滞流区” ,并在0°~ 90°~ 180°部位形成了顺压力梯度的附面层 ,部分细小颗粒或液滴在环形空间二次涡的作用下被输送到升气管外壁表面 ,沉积在该附面层内 ,具有结焦倾向的油气组分与催化剂细颗粒发生结焦反应 ,焦粒逐渐长大形成月牙状焦块  相似文献   

3.
蜗壳式旋风分离器环形空间流场的研究   总被引:9,自引:1,他引:8  
流场测量表明蜗壳式旋风分离器环形空间的速度场和静压场是非轴对称的 ,存在着切向速度的增高区 (0~ 1 80°,以入口处为 0°)和降低区 (1 80~ 360°)及相对应的静压分布降压区和增压区。在升气管管壁表面附近存在有低速的“滞流层”。蜗壳式旋风分离器环形空间的这种流场分布对颗粒在环形空间的运动过程和旋风分离器性能有重要影响。  相似文献   

4.
粗旋风分离器内气相流场研究与数值模拟   总被引:1,自引:0,他引:1  
采用CFX软件提供的DSM模型对催化裂化沉降器内粗旋风分离器中的气相流动规律进行了数值模拟,并与用五孔探针测试的流场进行了比较。结果表明,采用合适的网格系统和边界条件等,DSM模型对粗旋风分离器具有良好的预测精度。对实验和模拟结果的分析表明,粗旋风分离器内流场与常规旋风分离器的流场不同,升气管和料腿均存在回流区,升气管回流区最大可波及分离空间,对分离空间流场有很大干扰。料腿直径的减小以及灰斗的存在使升气管排出的气量增大并使升气管、料腿回流区大幅减小,从而在宏观上保证了气固分离效率和较小的气相停留时间。  相似文献   

5.
对炼油厂催化裂化装置沉降器内顶旋升气管外壁结焦的微观结构和外观特点所作的分析表明,升气管外壁的结焦主要是由液滴状结焦和细催化剂颗粒组成,结焦组织致密,焦块硬脆;结焦厚度沿圆周分布不均,以入口为0°,结焦厚度从0°约2cm向后逐渐增厚,表面有明显的冲刷沟槽,180°向后表面形成尖牙状结焦,厚度达10cm。升气管表面结焦是重组分油气冷凝形成的液滴和细催化剂颗粒沉积粘附在升气管表面发生结焦反应,并不断长大形成的。升气管表面结焦过程属于沉积型结焦,与升气管附近的流场密切相关。  相似文献   

6.
采用相位多普勒分析仪研究了不同入口旋风分离器气相非轴对称流场。首先采用圆管层流实验验证测量系统的准确性,然后考察不同入口结构下直筒型旋风分离器内部流场的分布特点。实验测得的切向、轴向速度、湍流度分布与旋风分离器典型流场分布特点一致。对比3种入口结构旋风分离器测量结果发现,随着入口结构轴对称性逐渐增加,其内部流场分布的非轴对称性明显减小,旋转中心与旋风分离器几何结构中心之间的偏心距也明显减小,有利于提高旋风分离器的分离效率并降低因涡核摆动造成的摩擦阻力。合理地布置入口结构是抑制单入口旋风分离器非轴对称旋转流动,提高旋风分离器性能的有效手段之一。  相似文献   

7.
采用数值模拟和实验研究的方法比较了不同进气量下,相同入口面积的Stairmand型和轴流导叶式旋风分离器的压降、分离效率和内部流场。结果表明,进气量648 m3/h时,轴流导叶式分离器内切向速度小于Stairmand分离器,进气量1080 m3/h时,轴流导叶式分离器切向速度较大;本实验条件下,轴流导叶式分离器可以明显增加内部流场的对称性和稳定性,削弱环形空间纵向环流和短路流现象;Stairmand型分离器分离效率随进气量先增大后减小,轴流导叶式分离器的效率则一直增加,且进气量小于1080 m3/h时,Stairmand型分离器分离效率较高,进气量大于1080 m3/h时,轴流导叶式分离器分离效率较高;相同进气量下,轴流导叶式分离器压降基本小于Stairmand型分离器。  相似文献   

8.
提出一种斜切双进口旋风分离器,并用RSM模型对该分离器的三维流场和分离效率进行数值模拟。结果表明:斜切双进口型式旋风分离器很好地改善了单进口直切式旋风分离器流场的不对称性,减小了内部的局部涡流;随着倾斜角度的增加,其切向速度、轴向速度均呈现先增加后降低的趋势,在倾斜角度为12○ 时轴向速度达到峰值,倾斜角度为10○ 时切向速度达到峰值,压降也呈现先增加后降低的规律,但最大值也远远小于单进口型式,径向速度变化不明显;斜切式双进口旋风分离器可以有效提高旋风分离器的分离效率,其最佳倾斜角度为10○。  相似文献   

9.
基于计算流体力学,采用RNGk-e湍流模型和离散相模型,研究了锥度在163~175°的天然气净化用旋风分离器的压力场、速度场分布以及分离效率。结果发现,升气管入口附近的部分区域速度和压力变化最大;锥度对筒体及小锥体区域几乎没有影响,而对升气管和大锥体的影响很大,但是并不改变流场的整体分布规律。随着锥度的增加,压降呈递减趋势。气体总速度与切向速度的变化趋势相同,均随锥度的增大而减小。在最小粒径为5μm时,不同锥度下旋风分离器的分离效率均为100%,但是在顶板附近有不同程度的颗粒堆积现象。锥度为163°和166°时,颗粒返混现象很严重,极易造成旋风分离器的顶板腐蚀穿孔,因此不适于工程实际。在剩余的3种结构中,速度变化相差小,从压降和体积方面考虑,172°的锥角结构最优,可较大程度减少材料耗损,节约制造成本。  相似文献   

10.
采用激光多普勒测速仪(LDV)对旋流快分系统(VQS)内环形空间的气相流场进行研究。结果表明,VQS系统内环形空间的气相流场具有双涡特性,内外涡的分界点处存在最大的切向速度。由于流体与双侧壁面之间的摩擦造成能量损失和湍流能量耗散,导致最大切向速度不断衰减且位置沿轴向向下逐渐向提升管外壁移动,同时涡量传递造成外部的准自由涡区逐渐增大,内部的准强制涡区逐渐缩小。轴向速度沿径向呈明显的线性分布,下行轴向速度沿提升管外壁向封闭罩内壁的径向方向逐渐增大。轴向速度的径向梯度沿轴向向下逐渐变小,轴向速度分布也逐渐趋于水平直线状。整个环形空间内,切向、轴向相对湍流强度分布稳定,湍流脉动与扩散比较平缓,有利于气流稳定下行,避免纵向环流、涡旋死区的发生。  相似文献   

11.
当旋风分离器的进气流量(Qin)小于设计流量时,分离效率会大幅降低。对此,笔者提出通过改变入口面积来保持或提高分离效率的解决方案。首先,以PV型旋风分离器为对象,通过冷态实验,对比了2种入口面积改变方式与分离效率的关系。结果表明,随着进气流量减小,入口面积减小可有效提高分离效率,且侧堵入口(BS型)的效果优于横堵入口(BT型)。流场模拟结果表明,与BT型旋风分离器相比,BS型旋风分离器的切向速度更大,径向速度峰值更小且更均匀,因此其分离效率更高。其次,设计了1种入口面积可变式(VIA型)旋风分离器,确定了入口面积调节方法,并测试了其分离性能。结果表明,当进气流量从最佳进气流量递减时,因其入口面积可随之变小,入口气速基本不变,而分离效率不降反升,并在实验范围(Qin为2300~9700 m3/h)内一直保持较高的水平。  相似文献   

12.
采用相位多普勒分析仪研究了4种不同排气管直径的旋风分离器气相非轴对称旋转流场。结果表明,实验测得的切向速度、轴向速度、湍流度分布与旋风分离器典型流场分布特点一致;随着排气管直径的减小,旋转中心与旋风分离器几何结构中心之间的偏心距也明显减小,其内部流场分布的非轴对称性减弱,有利于提高旋风分离器的分离效率,并降低因涡核摆动造成的摩擦阻力。说明合理地设置排气管直径是抑制单入口旋风分离器非轴对称旋转流动、提高旋风分离器性能的有效手段。  相似文献   

13.
 为了分析压力变化对旋风分离器内颗粒浓度分布的影响,利用Fluent6.1软件, 气相流场采用修正的雷诺应力模型, 颗粒相运动采用颗粒随机轨道模型, 对0.1~6.5Mpa压力下旋风分离器内气、固两相流流场进行了模拟。结果表明,在入口浓度一定条件下,随着压力的升高,器壁颗粒浓度渐呈螺旋状灰带分布,旋风分离器内旋流区域的颗粒浓度减小,旋风分离器分离能力增强。压力增加一方面使气体切向速度增加,颗粒所受离心力增加;另一方面,气体的湍流强度增大,颗粒的扩散作用增强。当压力超过3.0 MPa后,压力增加对切向速度影响不大,而颗粒扩散增加,旋风分离器内旋流区域颗粒浓度增加,对颗粒分离不利。旋风分离器的径向颗粒浓度分布可以用指数函数描述,其中颗粒的径向速度、颗粒的扩散系数和边壁的颗粒浓度是影响颗粒浓度分布的主要因素。旋风分离器粒级效率随压力的增加而增大,当压力超过3.0 MPa后,压力增加对粒级效率影响不大。  相似文献   

14.
催化裂化装置沉降器粗旋结构设计探讨   总被引:1,自引:0,他引:1  
通过FLUENT 6.2流体计算软件,采用雷诺应力模型(RSM)对直径500 mm、三种不同升气管/料腿直径组合的粗旋气相流场进行了数值模拟,分析了升气管和料腿长度改变以及尺寸放大对粗旋流场和性能的影响。模拟结果表明,粗旋流场同普通旋风分离器流场的区别主要在于轴向速度和升气管、料腿内的流场分布;升气管直径大于料腿直径的结构有利于减少由料腿排出的气体量,从而缩短粗旋排出的气体在沉降器内的停留时间,这是粗旋设计的关键;升气管、料腿长度改变对粗旋上下行气量分配有一定影响,其长度选取均存在最佳范围;尺寸放大后,粗旋流场基本上相似,下行气量占进气量的比率略有增大。  相似文献   

15.
为了提高旋风分离器在高温高压条件下的承压耐温能力,根据工业应用成熟的PV型高效旋风分离器的结构,提出一种长圆切向入口、两端封头的压力容器式旋风筒体旋风分离器(简称容器式旋风分离器)。流场模拟分析表明,在相同入口气速下,容器式旋风分离器外旋流区的切向速度明显高于PV型旋风分离器,且器壁附近向下的轴向速度也略高于后者,中心涡核区轴向速度低于后者。用中位粒径为9.8 μm的滑石粉进行加尘冷模实验表明,相同气速下,容器式旋风分离器的分离效率较PV型旋风分离器的高约2%;相同压降下,前者的分离效率明显高于后者。容器式旋风分离器结构简单,结构强度和分离性能优良,可供高温、高压工况的分离操作使用。  相似文献   

16.
朱浩东  杨敏 《石油机械》1995,23(2):15-18
论述了多功能旋流分离器在溢流管三种不同插入深度、六种不同流量组合工况下速度场的测试试验情况及分离器环形空间和分离空间内液流轴向速度和切向速度的分布状况,分析了这种分离器内部速度场的分布特点及溢流管不同插入深度、造旋臂、体侧臂、中心管等结构参数和流量比对速度场的影响,得出了溢流管直径和造旋臂直径是影响速度场的主要因素,而流量比对速度场的影响仅限于溢流管以下较小区域内的结论。  相似文献   

17.
采用雷诺应力模型(RSM)和离散相模型(DPM)对旋风分离器内的气-固两相流动进行了数值模拟计算,比较了带有不同外导流管的旋风分离器内流场、压降和分离效率,并探究了不同外导流管管径对旋风分离器内的流场调控及分离性能的影响。结果表明:外导流管可以改善旋风分离器内的二次涡分布,减小纵向环流的影响范围,降低二次涡间的协同作用,并抑制灰斗入口和料腿入口的二次流,从而提高分离效率;其中,带有H-E型外导流管的旋风分离器有效地提高了细小颗粒的分离效率,对粒径4 μm以下颗粒分离效率的提高可达10%以上;H-E型外导流管对入口气流进行分流,可以减小气流的旋流损失,使压降降低16.7%。此外,外导流管管径对H-O型旋风分离器分离性能影响较小,对H-E型旋风分离器分离性能影响较大。  相似文献   

18.
针对内部设有中心体的轴流式气-液旋流分离器,根据液滴在分离器内部旋流场的受力情况,建立分离器分离效率模型。实验发现,当液滴直径大于10 μm时,通过理论模型求得的液滴粒级分离效率与实验值吻合较好;在一定气速范围内,减小导流叶片出口角、增加中心体直径以及减小排气管直径均能够提高分离效率,即对于一定结构的分离器,存在相应的临界气速能够使分离器的分离效率达到最大值,随气速继续增大,分离效率呈下降趋势。根据实验结果提出分离器在不同工况下的设计准则,当气速高于临界气速时,为保证分离器分离效率,维持较低压降,设计导叶出口角为45°,中心体直径与筒体直径比为0.5,排气管直径与筒体直径比为0.85,分离器长度与筒体直径比为3。当入口气速低于临界气速时,可根据理论模型对分离器结构参数进行调整。  相似文献   

19.
PV型旋风分离器内流场的试验研究   总被引:7,自引:0,他引:7  
用五孔球探针与热线风速仪测定了不同结构参数的PV型旋风分离器全空间内的三维速度分布,总结了入口气速与主要结构参数变化后对流场的影响规律,提出了相似放大的办法。结果表明,在旋风分离器的蜗壳顶部存在纵向二次流,在芯管下口附近存在短路流,在排尘口处有较强的灰斗返气,这些均不利于气固分离  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号