首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combined melt-infiltration/sintering (MIS) route has been described for the preparation of composites that are based on titanium carbide (TiC) with a ductile nickel aluminide (Ni3Al) "binder" phase. This approach allows control of the Ni3Al content, which can be varied readily in the range of 4–25 vol%. Densities of >98% of the theoretical density have been obtained for composites that have been prepared with Ni3Al contents of ≥8 vol%. Preliminary examination indicates that the infiltration kinetics approximate to parabolic at 1300°C. Compositional analysis of the densified materials indicates only minimal titanium dissolution into the Ni3Al alloy (<6 at.%), with an analyzed carbide composition of TiC0.93. Cubic grain-growth kinetics are observed for TiC–16-vol% Ni3Al, with an activation energy of ∼400 ± 60 kJ/mol.  相似文献   

2.
Composites with microstructures of interpenetrating networks were manufactured by gas pressure infiltration of Ni3Al into porous preforms of aluminum oxide. Composites with Ni3Al contents of between 15% and 30% by volume were made and evaluated mechanically at temperatures between room temperature and 1000°C. The fracture strength, the fracture toughness, Young's modulus, and the thermal expansion coefficient were measured for each composite and test condition and were correlated with the microstructures of the composites. Composites with low Ni3Al contents had strengths below 400 MPa, presumably due to microcracking along the interface between the Ni3Al and the Al2O3. The composite with the highest content of Ni3Al, 30 vol%, had a mean fracture strength of 675 ± 16 MPa, a Weibull modulus of 23.9, and a room-temperature toughness of 9.2 ± 0.5 MPa·m1/2.  相似文献   

3.
The effects of Ni3Al and Al2O3 additions on the mechanical properties of hydroxyapatite (HAp) were investigated. The addition of Ni3Al particles increased the strength as well as the fracture toughness of HAp. However, the improvements in the properties were limited because of the formation of microcracks around the metal particles. The microcracks were formed because of the large difference in the coefficients of thermal expansion between HAp and Ni3Al, and because of the relatively large size of Ni3Al particles (∼20 µm). The addition of submicrometer Al2O3 powder was also effective in increasing the mechanical properties. The flexural strength and the fracture toughness were increased from about 100 MPa and 0.7 MPam1/2, respectively, to 200 MPa and 1.5 MPam1/2 by the addition of 20 vol% Al2O3. When Ni3Al and Al2O3 were added together, the fracture toughness was further increased to 2.3 MPam1/2. This increase in the fracture toughness was attributed to the synergistic effect of matrix strengthening and crack interactions with the metal particles.  相似文献   

4.
Silicon carbide ceramics containing up to 24.6 vol% dispersed TiC particles yielded fully dense composites by hot-pressing at 2000°C with 1 wt% Al and 1 wt% C added. The micro-structure consists of fine TiC particles in a fine-grained SiC matrix. Addition of TiC particles increases the critical fracture toughness of SiC (to ∼6 MPa·m1/2 at 24.6 vol% TiC) and yields high flexure strength (≥680 MPa), with both properties increasing with increasing volume fraction of TiC. The strengths at high temperatures are also improved by the TiC additions. Observations of the fracture path indicate that the improved toughness and strength are a result of crack deflection by the TiC particles.  相似文献   

5.
YPSZ/Al2O3-platelet composites were fabricated by conventional and tape-casting techniques followed by sintering and HIPing. The room-temperature fracture toughness increased, from 4.9 MPa·m1/2 for YPSZ, to 7.9 MPa·m1/2 (by the ISB method) for 25 mol% Al2O3 platelets with aspect ratio = 12. The room-temperature fiexural strength decreased 21% and 30% (from 935 MPa for YPSZ) for platelet contents of 25 vol% and 40 vol%, respectively. Al2O3 platelets improved the high-temperature strength (by 110% over YPSZ with 25 vol% platelets at 800°C and by 40% with 40 vol% platelets at 1300°C) and fracture toughness (by 90% at 800°C and 61% at 1300°C with 40 vol% platelets). An amorphous phase at the Al2O3-platelet/YPSZ interface limited mechanical property improvement at 1300°C. The influence of platelet alignment was examined by tape casting and laminating the composites. Platelet alignment improved the sintered density by >1% d th , high-temperature strength by 11% at 800°C and 16% at 1300°C, and fracture toughness by 33% at 1300°C, over random platelet orientation.  相似文献   

6.
Based on the RBAO technology, low-shrinkage mullite/SiC/ Al2O3/ZrO2 composites were fabricated. A powder mixture of 40 vol% Al, 30 vol% A12O3 and 30 vol% SiC was attrition milled in acetone with TZP balls which introduced a substantial ZrO2 wear debris into the mixture. The precursor powder was isopressed at 300–900 MPa and heattreated in air by two different cycles resulting in various phase ratios in the final products. During heating, Al oxidizes to Al2O3 completely, while SiC oxidizes to SiO2 only on its surface. Fast densification (at >1300°C) and mullite formation (at 1400°C) prevent further oxidation of the SiC particles. Because of the volume expansion associated with the oxidation of Al (28%), SiC (108%), and the mullitization (4.2%), sintering shrinkage is effectively compensated. The reaction-bonded composites exhibit low linear shrinkages and high strengths: shrinkages of 7.2%, 4.8%, and 3%, and strengths of 610, 580, and 490 MPa, corresponding to compaction pressure of 300, 600, and 900 MPa, respectively, were achieved in samples containing 49–55 vol% mullite. HIPing improved significantly the mechanical properties: a fracture strength of 490 MPa and a toughness of 4.1 MPa.m1/2 increased to 890 MPa and 6 MPa.m1/2, respectively.  相似文献   

7.
Near fully dense ZrO2(3Y)/Fe3Al composites with significantly improved fracture toughness were synthesized by hot-press sintering at 1350°C. High fracture toughness and bending-strength values, 36 MPa·m1/2 and 1321 MPa, respectively, were achieved in 40 vol% Fe3Al composite ceramics, whereas those same values for ZrO2(3Y) alone were 10 MPa·m1/2 and 988 MPa, respectively. Microscopic observation of the crack path revealed that Fe3Al particle uniformly dispersed in the matrix have obvious crack-bridging effect. Improved thermal-shock resistance was also obtained, which was attributed to higher toughness, thermal conductivity, and lower Young's modulus by adding of Fe3Al particles.  相似文献   

8.
Tetragonal Zirconia Polycrystals Reinforced with SiC Whiskers   总被引:2,自引:0,他引:2  
The microstructure and the mechanical properties of hot-pressed tetragonal ZrO2 polycrystals (TZP) reinforced with up to 30 vol% SiC whiskers were studied. The SiC whisker-TZP composites were stable under the hot-pressing conditions at 1450°C. Annealing in an oxidizing atmosphere at ∼1000°C resulted in glass formation and microcracking caused by whisker oxidation and transformation of the ZrO2 grains near the whiskers to monoclinic symmetry. The fracture toughness was markedly improved by the dispersed whiskers (∼12 Mpa·m1/2 at 30 vol% SiC) compared to the values measured for the matrix (∼6 Mpa·m1/2). The flexural strength of the hot-pressed TZP-30 vol% SiC whisker composite at 1000°C (∼400 MPa) was twice that of the TZP matrix.  相似文献   

9.
CrN powder consisting of granular particles of ∼3 μm has been prepared by self-propagating high-temperature synthesis under a nitrogen pressure of 12 MPa using Cr metal. Dense pure CrN ceramics and CrN/ZrO2(2Y) composites in the CrN-rich region have been fabricated by hot isostatic pressing for 2 h at 1300°C and 196 MPa. The former ceramics have a fracture toughness ( K IC) of 3.3 MPa ·m1/2 and a bending strength (σb) of 400 MPa. In the latter materials almost all of the ZrO2(2Y) grains (0.36–0.41 μm) are located in the grain boundaries of CrN (∼4.6 μm). The values of K IC (6.1 MPa · m1/2) and σb (1070 MPa) are obtained in the composites containing 50 vol% ZrO2(2Y).  相似文献   

10.
Molybdenum carbosilicide composites (SiC-Mo≤5Si3C≤1) were fabricated via the melt-infiltration process. The fracture behavior of the composites was studied from room temperature up to 1800°C in 1 atm (∼105 Pa) of argon. The bend strength of the composites slightly increased at ∼1200°C, because of the brittle-ductile transition of the intermetallic phase. The composites retained ∼90% of their room-temperature strength, even at 1700°C. Compressive creep tests were performed over a temperature range of 1760°-1850°C and a stress range of 200–250 MPa. The creep rate of the SiC-Mo≤5Si3C≤1 composites was approximately an order of magnitude higher than that of reaction-bonded SiC.  相似文献   

11.
NiAl/10-mol%-ZrO2(3Y) composites of almost full density have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The former intermetallic compound, which contains a trace amount of Al2O3, has been prepared via self-propagating high-temperature synthesis. The composite microstructures are such that tetragonal ZrO2 (∼0.2 μm) and Al2O3 (∼0.5 μm) particles are located at the grain boundaries of the NiAl (∼46 μm) matrix. Improved mechanical properties are obtained: the fracture toughness and bending strength are 8.8 MPa·m1/2 and 1045 MPa, respectively, and high strength (>800 MPa) can be retained up to 800°C.  相似文献   

12.
High-density whisker-reinforced composites of an alumina-30 vol% glass matrix material were produced by hot-pressing in the temperature range 1350° to 1400°C in air. Significant improvement was observed in the strength of composites containing 15 vol% SiC whiskers, up to ∼550 MPa, but with only a small effect on the fracture toughness. In composites containing Si3N4 whiskers, no reinforcement was achieved. Transmission electron microscopy showed the formation of a protective layer of amorphous silica on the SiC whiskers, while the Si3N4 whiskers were found to react with the matrix. The mechanical properties were related to the microstructure and the density of the samples.  相似文献   

13.
In this paper, TiCp/Ni3Al composites are synthesized in situ at near theoretical density under high-pressure (1.56.5 GPa), high-temperature (1073–1473 K) conditions. The grain size of TiC-reinforced particles is nanometer scale, which influences the Vickers microhardness of the composites. The effect of pressure on the grain size of TiC is discussed.  相似文献   

14.
Combustion Synthesis of Silicon Nitride-Silicon Carbide Composites   总被引:2,自引:0,他引:2  
The feasibility of synthesizing silicon nitride-silicon carbide composites by self-propagating high-temperature reactions is demonstrated. Various mixtures of silicon, silicon nitride, and carbon powders were ignited under a nitrogen pressure of 30 atm (∼ 3 MPa), to produce a wide composition range of Si3N4-SiC powder products. Products containing up to 17 vol% of SiC, after being attrition milled, could be hot-pressed to full density under 1700°C, 3000 psi (∼ 21 MPa) with 4 wt% of Y2O3. The microhardness and fracture toughness of these composites were superior to those of the pure β-Si3N4 matrix material and compared very well with the properties of "traditionally" prepared composites.  相似文献   

15.
The fracture strengths of sintered Al2O3 containing 20 and 40 vol% ZrO2(12 mol% CeO2)—zirconia-toughened alumina (ZTA)—composites along with the fracture resistance can be increased (e.g., to ∼900 MPa and >12 Mpa·m1/2, respectively), by increasing the mean grain size of the t -ZrO2 (and the Al2O3) from ∼0.5 μm to ∼3 μm. At these lower t -ZrO2 contents, the fracture strength-fracture resistance curves show a continuous rise as opposed to the strength maxima observed in polycrystalline t -ZrO2(12 mol% CeO2), CeTZP, and ZrO2(12 mol% CeO2) ceramics containing ≤20 vol% Al2O3. The toughened composites also exhibit excellent damage resistance with fracture strengths of 500 MPa retained with surfaces containing ∼150- N Vickers indentations which produce cracks of ∼160-μm radius. Greater damage resistance correlates with an increase in the apparent R -curve response of these composites.  相似文献   

16.
Carbon nanofiber (CNF)-dispersed B4C composites have been synthesized and consolidated directly from mixtures of elemental raw powders by pulsed electric current pressure sintering (1800°C/10 min/30 MPa). A 15 vol% CNF/B4C composite with ∼99% of dense homogeneous microstructures (∼0.40 μm grains) revealed excellent mechanical properties at room temperature and high temperatures: a high bending strength (σb) of ∼710 MPa, a Vickers hardness ( H v) of ∼36 GPa, a fracture toughness ( K I C ) of ∼7.9 MPa m1/2, and high-temperature σb of 590 MPa at 1600°C in N2. Interfaces between the CNF and the B4C matrix were investigated using high-resolution transmission electron microscopy, EDS, and electron energy-loss spectroscopy.  相似文献   

17.
Dense Si/SiC composites were fabricated via a conventional reaction-bonding process, using oak charcoal that exhibited a honeycomb structure. The silicon melt was infiltrated into the porous oak charcoal (density of ~0.6 g/cm3) while the sample was heated to 1700°C under vacuum (10-3 torr (~0.133 Pa)), which resulted in in situ silicon-fiber/SiC composites. The reaction product had an average density of 2.8 g/cm3 and showed three-point flexural strengths of 330 MPa at room temperature and 280 MPa at 1300°C. Good oxidation resistance also was observed at temperatures up to 1300°C in flowing air. This process provided excellent shape-making capability, because the charcoal that was used as a preform was readily machinable.  相似文献   

18.
Strength measurements and fractography were used to investigate the failure of alumina-glass dental composites containing 75 vol% alumina and 25 vol% glass. Alumina compacts were prepared by slip casting and sintering at 1100°C for 2 h. Dense composites were made by infiltrating partially sintered alumina with glass at 1150°C for 8 h. Young's modulus and the hardness of the composites were 270 GPa and 12 GPa, respectively. The mean strength (460 MPa) and fracture toughness (4.0 MPa·m1/2) of the composites were insensitive to the glass thermal expansion coefficient (αglass= 5.9 × 10−6 to 7.8 × 10−6°C−1). Typical flaws were pores and cracklike voids formed by poor particle packing and differential sintering near agglomerates of alumina in the composite. Crack deflection and crack bridging were observed in indentation cracks. Fracture toughness was single-valued because the alumina particle size was small (∼3 μm). Alumina-glass composites are promising new ceramics for dental crown and bridge applications, because their strength and fracture toughness are ∼2 times greater than those of current dental ceramics.  相似文献   

19.
Two different zirconia-alumina composites, ZTA-30 (70 wt% Al2O3+30 wt% ZrO2) and ZTA-60 (40 wt% Al2O3+60 wt% ZrO2), with potential for orthopedic applications, were processed in aqueous media and consolidated by slip casting (SC), hydrolysis-assisted solidification (HAS), and gelcasting (GC) from suspensions containing 50 vol% solids loading. For comparison purposes, the same ceramic compositions were also consolidated by die pressing of freeze-dried granules (FG). In the HAS process, 5 wt% of Al2O3 in the precursor mixture was replaced by equivalent amounts of AlN to promote the consolidation of the suspensions. Ceramics consolidated via GC exhibited higher green (three-point bend) strengths (∼17 MPa) than those consolidated by other techniques. Further, these ceramics also exhibited superior fracture toughness and flexural strength properties after sintering for 1 h at 1600°C in comparison with those consolidated by other techniques, including conventional die pressing (FG).  相似文献   

20.
The feasibility of joining of 3-D carbon—carbon (C–C) composites by using B and TiSi2 interlayers has been investigated. The optimum temperature for joining with a B interlayer was determined to be about 1995°C and that for joining with a TiSi2 interlayer was about 1490°C. The shear strengths of the joints made at these optimum temperatures were found to increase with the shear testing temperature up to a point, followed by a decrease at higher temperatures. For C–C specimens bonded at 1995°C with a B interlayer, the maximum joint shear strength (average value 18.35 MPa) was observed at the test temperature of 1660°C. The shear strength of joints produced with a TiSi2 interlayer showed a maximum at the test temperature of 1164°C, with an average value of 34.41 MPa. The B interlayers reacted with C–C composite pieces during joining, and the product of reaction was identified as B4C. In specimens joined with TiSi2 interlayers, the reaction between TiSi2 and C did not go to completion, and the bond interlayer contained TiC, SiC, and TiSi2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号