首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen-driven denitrification using the fiber membrane biofilm reactor (MBfR) was evaluated for consistent operation in tertiary wastewater treatment. The possibility of controlling the process rates, as well as biofilm parameters by supplying limited amounts of electron donor (hydrogen), was tested. Limiting the hydrogen supply proved to be efficient in controlling the biofilm growth and performance of the MBfR. Denitrification rates remained unchanged for both synthetic wastewater (SWW) and real municipal wastewater (MWW) effluent as well through the fluctuations in the substrate (NO3-N) concentration. The average denitrification rates were 0.50 (+/- 0.02) g NO3-N per day per m2 for SWW and 0.59 (+/- 0.04) g NO3-N per day per m2 for MWW. Biofilm density rather than thickness was the determining factor in substrate diffusion and biofilm sloughing, ultimately determining operating stability. Limited hydrogen supply assured constant volatile solids (VS) concentration in the biofilm. It was determined that VS/TS ratio higher than 0.25 assured stable biofilm operation. Decrease of VS/TS ratio below 0.25 led to shearing of the nonbiological outer layers of the biofilm. The values of chemical oxygen demand (COD), volatile suspended solids (VSS) and total suspended solids (TSS) in the final effluent were stable and well below wastewater effluent guidelines. Substitutions of bicarbonate with gaseous carbon dioxide as the carbon source did not affect denitrification rates despite lower than optimum pH conditions.  相似文献   

2.
The purpose of this work was to investigate the effects of the addition of by-products from the refining of vegetable oil on the behavior of co-digestion reactors treating a mixture of grass, cow dung and fruit and vegetable waste. Three by-products were used: one soapstock, one used winterization earth and one skimming of aeroflotation of the effluents. Three 15 l reactors were run in parallel and fed five times a week. In a first phase of 4 weeks, the three reactors were fed with the co-digestion substrates alone (grass, cow dung and fruit and vegetable waste) at an organic loading rate (OLR) of 1.5 g VS/kg d (VS: volatile solids). Then, a different by-product from the refining of oil was added to the feed of each reactor at an OLR of 0.5 g VS/kg d, generating a 33% increase in the OLR. The results show that the addition of by-products from the refining of oil is an efficient way of increasing the methane production of co-digestion reactors thanks to high methane yield of such by-products (0.69-0.77 l CH(4)/g VS loaded). In fact, in this work, it was possible to raise the methane production of the reactors by about 60% through a 33% increase in the OLR thanks to the addition of the by-products from the refining of vegetable oil.  相似文献   

3.
The feasibility of integrating biological hydrogen and methane production in a two-stage process using mixed cultures and cheese whey powder (CWP) as substrate was studied. The effect of operational parameters such as hydraulic retention time (HRT) and organic loading rate (OLR) on the volumetric hydrogen (VHPR) and methane (VMPR) production rates was assessed. The highest VHPR was 28 L H2/L/d, obtained during stable operation in a CSTR at HRT and OLR of 6 h and 142 g lactose/ L/d, respectively. Moreover, hydrogen (13 L/L/d) was produced even at HRT as low as 3.5 h and OLR of 163 g lactose/L/d, nonetheless, the reactor operation was not stable. Regarding methane production in an UASB reactor, the acidified effluent from the hydrogen-producing bioreactor was efficiently treated obtaining COD removals above 90% at OLR and HRT of 20 g COD/L/d and 6 h, respectively. The two-stage process for continuous production of hydrogen and methane recovered over 70% of the energy present in the substrate. This study demonstrated that hydrogen production can be efficiently coupled to methane production in a two-stage system and that CWP is an adequate substrate for energy production.  相似文献   

4.
This paper describes the use of electrical conductivity for measurement of volatile fatty acids (VFA), alkalinity and bicarbonate concentrations, during the anaerobic fermentation process. Two anaerobic continuous processes were studied: the first was a laboratory reactor for hydrogen production from molasses and the second was a pilot process for anaerobic digestion (AD) of vinasses producing methane. In the hydrogen production process, the total VFA concentration, but not bicarbonate concentration, was well estimated from the on-line electrical conductivity measurements with a simple linear regression model. In the methane production process, the bicarbonate concentration and the VFA concentration were well estimated from the simultaneous on-line measurements of pH and electrical conductivity by means of non-linear regression with neural network models. Moreover, the total alkalinity concentration was well estimated from electrical conductivity measurements with a simple linear regression model. This demonstrates the use of electrical conductivity for monitoring the AD processes.  相似文献   

5.
The process of anaerobic thermophilic digestion of municipal wastewater sludge with a recycled part of thickened digested sludge, was studied in semi-continuous laboratory digesters. This modified recycling process resulted in increased solids retention time (SRT) with the same hydraulic retention time (HRT) as compared with traditional digestion without recycling. Increased SRT without increasing of HRT resulted in the enhancement of volatile substance reduction by up to 68% in the reactor with the recycling process compared with 34% in a control conventional reactor. Biogas production was intensified from 0.3 L/g of influent volatile solids (VS) in the control reactor up to 0.35 L/g VS. In addition, the recycling process improved the dewatering properties of digested sludge.  相似文献   

6.
Application of thermal treatment at 100-140 degrees C as a pretreatment method prior to anaerobic digestion of a mixture of cattle and swine manure was investigated. In a batch test, biogasification of manure with thermally pretreated solid fraction proceeded faster and resulted in the increase of methane yield. The performances of two thermophilic continuously stirred tank reactors (CSTR) treating manure with solid fraction pretreated for 40 minutes at 140 degrees C and non-treated manure were compared. The digester fed with the thermally pretreated manure had a higher methane productivity and an improved removal of the volatile solids (VS). The properties of microbial communities of both reactors were analysed. The specific methanogenic activity (SMA) test showed that both biomasses had significant activity towards hydrogen and formate, while the activity with the VFA - acetate, propionate and butyrate - was low. The kinetic parameters of the VFA conversion revealed a reduced affinity of the microbial community from the CSTR fed with thermally pre-treated manure for acetate, propionate and butyrate. The bacterial and archaeal populations identified by t-RLFP analysis of 16S rRNA genes were found to be identical in both systems. However, a change in the abundance of the species present was detected.  相似文献   

7.
This paper assesses the anaerobic digestion (AD) of the source-sorted organic fraction of municipal solid waste (SS-OFMSW). For this purpose, an experimental programme was implemented involving the operation and monitoring of two bench-scale anaerobic digesters, continuously fed with SS-OFMSW. The mathematical model (ADM1) was then applied to simulate the process of AD of SS-OFMSW. While start-up of the digesters was relatively slow, re-inoculation with cattle manure with effluent dilution reduced the acclimation period and achieved better stability, accommodating a feeding rate at an OLR = 2.39 kg TVS m(-3) day(-1). The high recorded methane gas production rate, reaching (0.1-2.5 m(3) CH(4)/m(3) reactor day), confirms the excellent biodegradability of the type of waste used (SS-OFMSW) and its suitability for AD. Satisfactory simulations of soluble chemical oxygen demand (COD), pH, and methane composition of biogas were obtained, whereas volatile fatty acid (VFA) concentrations in both reactors were over-predicted albeit capturing its general trend.  相似文献   

8.
Thin stillage (CTS) from a dry-grind corn ethanol plant was evaluated as a carbon source for anaerobic digestion (AD) by batch and high rate semi-continuous down-flow stationary fixed film (DSFF) reactors. Biochemical methane potential (BMP) assays were carried out with CTS concentrations ranging from approximately 2,460-27,172 mg total chemical oxygen demand (TCOD) per litre, achieved by diluting CTS with clean water or a combination of clean water and treated effluent. High TCOD, SCOD and volatile solids (VS) removal efficiencies of 85 ± 2, 94 ± 0 and 82 ± 1% were achieved for CTS diluted with only clean water at an organic concentration of 21,177 mg TCOD per litre, with a methane yield of 0.30 L methane per gram TCOD(removed) at standard temperature and pressure (STP, 0 °C and 1 atmosphere). Batch studies investigating the use of treated effluent for dilution showed promising results. Continuous studies employed two mesophilic DSFF anaerobic digesters treating thin stillage, operated at hydraulic retention times (HRT) of 20, 14.3, 8.7, 6.3, 5 and 4.2 d. Successful digestion was achieved up to an organic loading rate (OLR) of approximately 7.4 g TCOD L(-1)d(-1) at a 5 d HRT with a yield of 2.05 LCH(4) L(-1)d(-1) (at STP) and TCOD and VS removal efficiencies of 89 ± 3 and 85 ± 3%, respectively.  相似文献   

9.
At the present time, organic solid wastes from industries and agricultural activities are considered to be promising substrates for biogas production via anaerobic digestion. Moreover solids stabilisation is required before reutilization or disposal. Slaughterhouses are among the most important industries in Uruguay and produce 150,000 tons of ruminal content (RC) and 30,000 tons of blood per year. In order to determine the influence of the solids and blood contents, the ammonia inhibition and the inoculum adaptation co-digestion batch tests were performed. A set of experiences with TS concentration of 2.5%, 5% and 7.5% and different ratios of RC/blood were carried out using an inoculum from an UASB reactor. In all experiences fast blood hydrolisation was observed. A higher methane production was detected in the experiences with higher TS content. However, the fraction of solids degradation was lower in these experiences. A plateau in the biogas production was found. The free ammonia level, which was above the reported inhibitory levels, could explain this behaviour. After the inhibition period the biogas production restarted probably due to the biomass acclimatisation to the ammonia. In order to determine the inoculum adaptation a new experiment was performed. The inoculum used was the sludge coming from the first set of experiences. Based upon batch tests a 3.5 m3 pilot reactor was designed and started up. Ammonia inhibition was avoided by the start-up strategy and in two weeks the biogas production was 3.5 m3/d. The VS stabilisation with a solid retention time of 20 days was of 43%. The pilot reactor working at steady state had a TS concentration of 3-4% with a ratio of RC/blood of 10:1 at the entrance.  相似文献   

10.
The performance of a novel high-rate anaerobic process, the anaerobic digestion elutriated phased treatment (ADEPT) process, for treating a slurry-type piggery waste (55 g COD/L and 37 g TS/L) was investigated. The ADEPT process consists of an acid elutriation slurry reactor for hydrolysis and acidification, followed by an upflow anaerobic sludge bed reactor for methanification. This process provides stable and high system performance with short HRT (7.4 d) and better effluent quality (2 g SCOD/L and 0.68 g VSS/L) due to the alkaline pH condition for hydrolysis/acidification phase, high refractory solids removal and ammonia toxicity reduction. The optimum pH and HRT for hydrolysis/acidogenesis of the piggery waste were 9 and 5 days at both 35 degrees C and 55 degrees C conditions. The hydrolysis and acidification rate in the mesophilic reactor were 0.05 d(-1) and 0.11 d(-1), meaning that hydrolysis was a limiting step. SCOD production by the hydrolysis was about 0.26 g SCOD/g VS(fed) (3.6 g SCOD/g VS reduction). Methane production and content in the system were 0.3 L CH4/g VS(fed) (0.67 L CH4/g VS destroyed) and 80%, respectively, corresponding to 0.23 L CH4/g COD removal (@STP).  相似文献   

11.
In the present study we tested four macroalgae species--harvested in Denmark--for their suitability of bioconversion to methane. In batch experiments (53 degrees C) methane yields varied from 132 ml g volatile solids(-1) (VS) for Gracillaria vermiculophylla, 152 mi gVS(-1) for Ulva lactuca, 166 ml g VS(-1) for Chaetomorpha linum and 340 ml g VS(-1) for Saccharina latissima following 34 days of incubation. With an organic content of 21.1% (1.5-2.8 times higher than the other algae) S. latissima seems very suitable for anaerobic digestion. However, the methane yields of U. lactuca, G. vermiculophylla and C. linum could be increased with 68%, 11% and 17%, respectively, by pretreatment with maceration. U. lactuca is often observed during 'green tides' in Europe and has a high cultivation potential at Nordic conditions. Therefore, U. lactuca was selected for further investigation and co-digested with cattle manure in a lab-scale continuously stirred tank reactor. A 48% increase in methane production rate of the reactor was observed when the concentration of U. lactuca in the feedstock was 40% (VS basis). Increasing the concentration to 50% had no further effect on the methane production, which limits the application of this algae at Danish centralized biogas plant.  相似文献   

12.
Sustainable operation of an anaerobic sewage sludge digester requires the effective shuttling of carbon from complex organic material to methane gas. The accumulation of intermediates and metabolic products such as volatile fatty acids and hydrogen gas not only reveal inefficiency within the digestion process, but can be detrimental to reactor operation at sufficiently high levels. Eight anaerobic digesters (1 mesophilic and 7 thermophilic) were operated in order to determine the effect of steady-state digestion temperature on the operational stability and performance of the digestion process. Replicate reactors operated at 57.5 degrees C, the highest temperature studied, were prone to accumulation of volatile fatty acids (4052 and 3411 mg/L as acetate) and gaseous hydrogen. Reactors operated at or below 55 degrees C showed no such accumulation of intermediate metabolites. Overall methanogenesis was also greatly reduced at 57.5 degrees C (0.09 L CH4/g VS fed) versus optimal methane formation at 53 degrees C (0.40 L CH4/g VS fed). Microbial community assessment and free energy calculations suggest that the accumulation of fatty acids and hydrogen, and relatively poor methanogenic performance at 57.5 degrees C are likely due to temperature limitations of thermophilic aceticlastic methanogens.  相似文献   

13.
Sludge samples from an upflow anaerobic sludge blanket (UASB) reactor and four submerged aerated biofilters (BFs) of a wastewater treatment plant (1,000 inhab.) were processed at bench scale by alkaline and acid hydrolysis with the objective to evaluate the organic matter solubilization, volatile solids (VS) destruction and the effect of hydrolytic processes on the extracellular polymeric substances (EPS) fraction of the sludge samples. The results showed that alkaline hydrolysis of sludge samples treatment with 1.0% total solids (TS) using NaOH 20 meq L(-1) was more efficient on organic matter solubilization and VS destruction than acid hydrolysis. The EPS sludge content was also affected by the alkaline treatment of anaerobic sludge samples. The EPS concentrations (mg EPS/gVSS) on the anaerobic sludge after the alkaline treatment were significantly lowered according to sample height in the UASB reactor. Data indicated that the EPS sludge fraction is the main component affected by the alkaline hydrolytic process of anaerobic sludge samples.  相似文献   

14.
Anaerobic ponds are usually used for treatment of industrial and agricultural wastes which contain high organic matter and sulphate. Competition for substrate between sulphate reducing bacteria and methane producing archaea, and the inhibitory effects of sulphide produced from microbial sulphate reduction reported in the literature varied considerably. In this research, a laboratory scale column-in-series anaerobic pond reactor, consisting of five cylindrical columns of acrylic tubes, was operated to evaluate the effect of COD and sulphate ratio on pond performance treating wastewater containing high organic matter and sulphate from a tapioca starch industry. The result depicted that no adverse effect of COD:SO4 ratios between 5 and 20 on overall COD removal performance of anaerobic pond operated with organic loading rate (OLR) of 150 to 600 g COD/m3d. Sulphate reducing bacteria could out-compete methane producing archaea for the same substrate at COD:SO4 ratio equal to or lower than 5 and OLR greater than 300 g COD/m3d. Sulphide inhibition was not observed on overall performance of pond up to an influent sulphate concentration of 650 mg/L.  相似文献   

15.
The objective of the present work was to evaluate the effect of hydraulic retention time (HRT) on hydrolysis and acidogenesis for the pretreatment processes: acid phase digestion (APD) and autothermal thermophilic aerobic digestion (ATAD) using blended municipal sludge. The effect of the different pretreatment steps on mesophilic anaerobic digestion (MAD) was evaluated in terms of methane yield, keeping the operating conditions of the MAD the same for all systems. Best operating conditions for both APD and ATAD were observed for 2.5 d HRT with high total volatile fatty acids (tVFA), and the highest methane yield observed for MAD. No significant difference was observed between the two processes in terms of overall volatile solids (VS) reduction with same total HRT. The autothermal process produced heat of 14,300 J/g VS removed from hydrolytic and acetogenic reactions without compromising overall methane yields when the HRT was 2.5 d or lower and the total O2 used was 0.10 m3 O2/g VS added or lower. However, the process needs the input of oxygen and engineering analysis should balance these differences when considering the relative merits of the two pretreatment processes. This is the first study of its kind directly comparing these two viable pretreatment processes with the same sludge.  相似文献   

16.
A thermophilic anaerobic digester with ultrafilter (TADU) for solids separation offers potential advantages of higher VS destruction, biomass retention, and pathogen removal. However, potential disadvantages include ultrafilter fouling, decreasing flux, and high VFA concentrations. In this study, a thermophilic anaerobic digester coupled to a sintered titanium, cross-flow ultrafilter was operated for over five months. Dairy manure was digested (HRT of 23 days). The filtrate VFA concentration was low (220 mg/L as HAc), average VS destruction was 49%, and a low average effluent fecal coliform concentration of 10(2) MPN/100 mL was observed. The low coliform value may be beneficial if dewatered biosolids are used for livestock bedding since low pathogen counts help prevent mastitis. Ultrafilter fluxes of 40-80 L/m2-hr were maintained by cleaning using caustic (3.5% NaOH) followed by water and acid (3% phosphoric acid). Sand from livestock bedding was found to damage the pump and ultrafilter. If TADU were implemented at full scale, then replacing sand bedding with dewatered biosolids should be considered.  相似文献   

17.
Continuous Stirred Tank Reactors (CSTRs), operated in batch mode, were used to evaluate the feasibility of psychrophilic (low temperature) digestion of perennial rye grass in a long term experiment (150 days) for the first time. The reactors were operated in parallel at 3 different temperatures, 10, 15 and 37 degrees C. Hydrolysis, acidification and methanogenesis were assessed by VS degradation, by soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) production, and by methane production, respectively. Hydrolysis was the rate-limiting step at all temperatures and the rates and extent of hydrolysis were considerably lower at 15 and 10 degrees C, than at 37 degrees C. The total VS degradation was 53%, 34% and 19% at 37, 15 and 10 degrees C, respectively. Acidification was not affected by temperature and VFA production and consumption was balanced in all cases, except at 10 degrees C. Methane yields were 0.215 m3 CH4 kg(-1) VS(-1) added, 0.160 m3 CH4 kg(-1) VS(-1) added and 0.125 m3 CH4 kg(-1) VS(-1) added at 37, 15 and 10 degrees C, respectively. Methanogenesis was not strongly affected at 15 C but it became rate-limiting at 10 degrees C. Overall, the solid degradation and methane production performance under psychrophilic conditions was encouraging and greater than previously reported. Considering the non-acclimated, mesophilic nature of the inoculum, there are grounds to believe that low-temperature anaerobic digestion of grass could be feasible if coupled to efficient hydrolysis of the biomass.  相似文献   

18.
Two additives (lyophilized bacilli and enzymes) and a solution of micronutrients (Fe, Co, Ni and Mo) were tried separately and in combination, in order to assess their effect on the anaerobic digestion of waste sludge from an enhanced primary treatment (EPT) of municipal wastewater. Three batch tests were carried out in serological bottles. In the first test, addition of bacilli increased production of methane from day 11 and at day 1 7 the production was 95% greater than the control. In that experiment, the concentration of volatile fatty acids (VFAs) was 1,391 mg/L, 40% lower than the control. In the second test, the combination of micronutrients with bacilli, reached from the first days a better methane production than the control, 167% higher in day 17. At the end of the experiment, this combination achieved a lower concentration of VFAs and a greater percentage of volatile solid removal than the rest of the treatments. The third test was based on an experimental design in order to statistically determine the best doses of bacilli additive and micronutrients. The anaerobic thermophilic digestion of sludge from aluminium sulfate EPT will be improved with the addition of Fe: 4.5 mg/g VS, Ni: 0.75 mg/g VS, Co: 0.45 mg/g VS, Mo: 0.09 mg/g VS and bacilli additive: 12 mg/g VS.  相似文献   

19.
This study was conducted to compare the performance of a continuous-flow stirred-tank reactor (CSTR) and an anaerobic sequencing batch reactor (ASBR) for fermentative hydrogen production at various substrate concentrations. Heat-treated anaerobic sludge was utilized as an inoculum, and hydraulic retention time (HRT) for each reactor was maintained at 12 h. At the influent sucrose concentration of 5 g COD/L, start-up was not successful in both reactors. The CSTR, which was started-up at 10 g COD/L, showed stable hydrogen production at the influent sucrose concentrations of 10-60 g COD/L during 203 days. Hydrogen production was dependent on substrate concentration, resulting in the highest performance at 30 g COD/L. At the lower substrate concentration, the hydrogen yield (based on hexose consumed) decreased with biomass reduction and changes in fermentation products. At the higher substrate concentration, substrate inhibition on biomass growth caused the decrease of carbohydrate degradation and hydrogen yield (based on hexose added). The ASBR showed higher biomass concentration and carbohydrate degradation efficiency than the CSTR, but hydrogen production in the ASBR was less effective than that in the CSTR at all the substrate concentrations.  相似文献   

20.
Wine production is seasonal, and thus the wastewater flow and its chemical oxygen demand (COD) concentrations greatly vary during the vintage and non-vintage periods, as well as being dependant on the winemaking technologies used, e.g. red, white or special wines production. Due to this seasonal high variability in terms of organic matter load, the use of membrane biological reactors (MBR) could be suitable for the treatment of such wastewaters. MBR offers several benefits, such as rapid start up, good effluent quality, low footprint area, absence of voluminous secondary settler and its operation is not affected by the settling properties of the sludge. A pilot scale hollow fibre MBR system of 220 L was fed by adequately diluting white wine with tap water, simulating wastewaters generated in wineries. The COD in the influent ranged between 1,000 and 4,000 mg/L. In less than 10 days after the start up, the system showed a good COD removal efficiency. The COD elimination percentage was always higher than 97% regardless of the organic loading rate (OLR) applied (0.5-2.2 kg COD/m3 d), with COD concentrations in the effluent ranging between 20 and 100 mg/L. Although the biomass concentration in the reactor increased from 0.5 to 8.6 g VSS/L, the suspended solids concentration in the effluent was negligible. Apparent biomass yield was estimated in 0.14 g VSS/g COD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号