首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops a damage tolerance reliability analysis methodology for automotive spot-welded joints under multi-axial and variable amplitude loading history. The total fatigue life of a spot weld is divided into two parts, crack initiation and crack propagation. The multi-axial loading history is obtained from transient response finite element analysis of a vehicle model. A three-dimensional finite element model of a simplified joint with four spot welds is developed for static stress/strain analysis. A probabilistic Miner's rule is combined with a randomized strain-life curve family and the stress/strain analysis result to develop a strain-based probabilistic fatigue crack initiation life prediction for spot welds. Afterwards, the fatigue crack inside the base material sheet is modeled as a surface crack. Then a probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction for spot welds. Both methods are implemented with MSC/NASTRAN and MSC/FATIGUE software, and are useful for reliability assessment of automotive spot-welded joints against fatigue and fracture.  相似文献   

2.
The structural application of lightweight magnesium alloys in the automotive industry inevitably involves dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change and fatigue resistance of Mg/steel resistance spot welds, in comparison with Mg/Mg welds. The microstructure of Mg/Mg spot welds can be divided into: base metal, heat affected zone and fusion zone (nugget). However, the microstructure of Mg/steel dissimilar spot welds had three different regions along the joined interface: weld brazing, solid-state joining and soldering. The horizontal and vertical Mg hardness profiles of Mg/steel and Mg/Mg welds were similar. Both Mg/steel and Mg/Mg welds were observed to have an equivalent fatigue resistance due to similar crack propagation characteristics and failure mode. Both Mg/steel and Mg/Mg welds failed through thickness in the magnesium sheet under stress-controlled cyclic loading, but fatigue crack initiation of the two types of welds was different. The crack initiation of Mg/Mg welds was occurred due to a combined effect of stress concentration, grain growth in the heat affected zone (HAZ), and the presence of Al-rich phases at HAZ grain boundaries, while the penetration of small amounts of Zn coating into the Mg base metal stemming from the liquid metal induced embrittlement led to crack initiation in the Mg/steel welds.  相似文献   

3.
Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged are weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Weld metal test specimens were extracted from five weld joints of Unionmelt No. 2 weld metal. The welds were of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. On the upper shelf, a multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing).  相似文献   

4.
This paper presents a probabilistic fatigue crack growth life prediction methodology for spot‐welded joints under variable amplitude loading history. The loading is multi‐axial and is obtained from transient response analysis of a vehicle model using finite‐element analysis. A three‐dimensional (3D) finite element model of a simplified joint with four spot welds is developed, and the static stress analysis of this joint is performed. Then the fatigue crack inside the base material sheet is modelled as a surface crack. Probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction methodology for spot welds. This new method is implemented with MSC/NASTRAN and MSC/FATIGUE and is useful for the reliability assessment of spot‐welded joints against fatigue crack growth.  相似文献   

5.
This work provides a numerical and experimental investigation of fatigue crack growth behavior in steel weldments including crack closure effects and their coupled interaction with weld strength mismatch. A central objective of this study is to extend previously developed frameworks for evaluation of crack closure effects on FCGR to steel weldments while, at the same time, gaining additional understanding of commonly adopted criteria for crack closure loads and their influence on fatigue life of structural welds. Very detailed non-linear finite element analyses using 3-D models of compact tension C(T) fracture specimens with center cracked, square groove welds provide the evolution of crack growth with cyclic stress intensity factor which is required for the estimation of the closure loads. Fatigue crack growth tests conducted on plane-sided, shallow-cracked C(T) specimens provide the necessary data against which crack closure effects on fatigue crack growth behavior can be assessed. Overall, the present investigation provides additional support for estimation procedures of plasticity-induced crack closure loads in fatigue analyses of structural steels and their weldments.  相似文献   

6.
The fatigue properties of spot-welded lap joints under a constant mean load made from 1.2 and 3 mm sheet thickness stainless steel with one, two or three-spot welds in series are reported. A log plot of cyclic load range versus fatigue life shows that for given sheet thickness and fixed load range, fatigue life increases with the number of spot welds. Oil has a beneficial effect by increasing the fatigue life of the welded joints. A fracture mechanics analysis is carried out on the data by treating the spot weld as a crack. A log plot of initial stress intensity factor range versus fatigue life is a straight line which is independent of the number of spot welds. However, increasing the sheet thickness shifts the straight line upwards in the log plot, thus indicating a longer fatigue life for the same applied initial stress intensity factor range.  相似文献   

7.
In this paper, analytical stress intensity factor and J integral solutions for resistance and friction stir spot welds without and with gap and bend in lap-shear specimens of different materials and thicknesses are developed. The J integral and stress intensity factor solutions for spot welds are first presented in terms of the structural stresses for a strip model. Analytical structural stress solutions for spot welds without and with gap and bend in lap-shear specimens are then developed based on the closed-form structural stress solutions for a rigid inclusion in a finite thin plate subjected to various loading conditions. With the available structural stress solutions, the analytical J integral and stress intensity factor solutions can be obtained as functions of the applied load, the elastic material property parameters, and the geometric parameters of the weld and specimen. The analytical stress intensity factor solutions are selectively validated by the results of three-dimensional finite element analyses for a spot weld with ideal geometry and for a friction stir spot weld with complex geometry, gap and bend. The stress intensity factor and J integral solutions at the critical locations of spot welds in lap-shear specimens of dissimilar magnesium, aluminum and steel sheets with equal and different thicknesses are then presented in the normalized forms as functions of the ratio of the specimen width to the weld diameter. Finally, general trends and simple estimation methods of the stress intensity factor and J integral solutions at the critical locations of spot welds in lap-shear specimens of different materials and thicknesses are given for convenient engineering applications.  相似文献   

8.
General Motors (GM) has developed a proprietary resistance spot welding (RSW) process using a multi-ring, domed electrode geometry that has been used successfully in automotive aluminum welding operations. To enhance structural performance, one-part epoxy adhesives are frequently applied prior to RSW to create weld-bonded joints. The addition of adhesive can result in additional porosity created within the weld nugget. Therefore, the adhesive's impact on mechanical properties, especially fatigue properties requires further investigation.Load-controlled fatigue testing was conducted on dissimilar aluminum alloy spot welds made of AA5754 wrought sheet and Aural2 die casting sheet with and without the addition of adhesive prior to welding. The same GM RSW electrode and weld schedule was used for both conditions. The results show that the addition of adhesive results in a larger nugget size, but similar maximum load in tension-shear testing. X-ray computed tomography during interrupted fatigue testing of the spot welds shows that the main fatigue crack initiates at the edge of the nugget in the plane of the faying interface and penetrates through the Aural2 die cast sheet in the thickness direction. Using the structural stress concept, it was also found that the structural stress range–fatigue life curve for these spot welds, both with and without adhesive, falls onto a single master curve indicating that the nugget size which corresponds to the tensile and bending strength dominates the fatigue life and that adhesive-induced porosity within the weld nugget does not harm fatigue performance.  相似文献   

9.
Notch stress, stress intensity factors and J-integral at a spot weld are generally expressed by structural stresses around the spot weld. The determination of these parameters are then simplified as determining the structural stresses that can be calculated by a spoke pattern in finite element analysis. Approximate stress formulas for structural stress, notch stress and equivalent stress intensity factor are given for common spot-welded specimens. With the aid of the formulas, test data in terms of the original load can be easily transformed into the data in terms of the structural stress, notch stress or equivalent stress intensity factor at the spot weld. The formulas also facilitate the transfer of test data across different specimens. A measuring method is given for lap joints. The strain gauge technique developed for the tensile-shear specimen shows that all the structural stress, notch stress, stress intensity factors and J-integral at the spot weld can be determined by two strain gauges attached only to the outer surface of one sheet. The results presented here should be helpful for the analysis and testing of spot welds and for developing measuring methods for spot welds.  相似文献   

10.
A hybrid polygonal element (HPE) method is presented in this study for evaluating the effects of micro-porosity on the fracture behavior of resistance spot welds. The HPE method uses an arbitrarily shaped n-sided polygonal grid to characterize porosity distribution in a weld nugget. Compared with traditional finite element methods, HPE method possesses a number of unique features and advantages, such as mesh simplicity, computational efficiency, and easiness in performing parametric studies. Randomly distributed porosity in a resistance spot weld can be directly modeled using this method. The interactions between porosity and the main crack around the periphery of a weld nugget can be easily quantified. This is of particular importance for aluminum resistance spot welds as the automotive industries strive to produce light-weight vehicles by using more and more aluminum alloys. To demonstrate its effectiveness, HPE method was applied to carry out a series of fracture mechanics analyses for aluminum spot welds with various distributions of micro-porosity. Both lap shear and lap tension specimens were analyzed. The analysis results shed light on the effects of porosity on the fatigue strength of aluminum spot welds.  相似文献   

11.
Fatigue behavior of laser welds in lap-shear specimens of high strength low alloy (HSLA) steel is investigated based on experimental observations and two fatigue life estimation models. Fatigue experiments of laser welded lap-shear specimens are first reviewed. Analytical stress intensity factor solutions for laser welded lap-shear specimens based on the beam bending theory are derived and compared with the analytical solutions for two semi-infinite solids with connection. Finite element analyses of laser welded lap-shear specimens with different weld widths were also conducted to obtain the stress intensity factor solutions. Approximate closed-form stress intensity factor solutions based on the results of the finite element analyses in combination with the analytical solutions based on the beam bending theory and Westergaard stress function for a full range of the normalized weld widths are developed for future engineering applications. Next, finite element analyses for laser welded lap-shear specimens with three weld widths were conducted to obtain the local stress intensity factor solutions for kinked cracks as functions of the kink length. The computational results indicate that the kinked cracks are under dominant mode I loading conditions and the normalized local stress intensity factor solutions can be used in combination with the global stress intensity factor solutions to estimate fatigue lives of laser welds with the weld width as small as the sheet thickness. The global stress intensity factor solutions and the local stress intensity factor solutions for vanishing and finite kinked cracks are then adopted in a fatigue crack growth model to estimate the fatigue lives of the laser welds. Also, a structural stress model based on the beam bending theory is adopted to estimate the fatigue lives of the welds. The fatigue life estimations based on the kinked fatigue crack growth model agree well with the experimental results whereas the fatigue life estimations based on the structural stress model agree with the experimental results under larger load ranges but are higher than the experimental results under smaller load ranges.  相似文献   

12.
The early propagation stages of fatigue cracks along the toe of automatic bead-on-plate welds in a structural steel are studied. Three methods to introduce a controlled degree of waviness on the weld toe, to optimize the degree of crack interaction during fatigue growth, were tested: arc rotation, variable arc voltage and variable weld speed. The development of fatigue cracks in seven specimens was monitored using a strain-gauge method and beach marking. Crack mismatch and depth to coalescence were found to be much smaller in the case of straight welds, which also showed shorter propagation lives. The period of toe waves, as well as local toe geometry, strongly influence fatigue crack initiation and propagation lives. Best fatigue life improvements were obtained with arc rotation techniques.  相似文献   

13.
A FATIGUE DESIGN PARAMETER FOR SPOT WELDS   总被引:1,自引:0,他引:1  
Abstract— Mode I and mode II stress intensity factors for two half-spaces connected by a circular patch were used to develop a mixed-mode stress intensity factor (termed the stress index K i) which can correlate the fatigue life of all spot weld geometries, base metals, and specimen dimensions. Empirical corrections were applied to Broek's equivalent stress intensity factor ( K lq) to account for the weldment geometry (sheet thickness, nugget diameter, specimen width) and the effect of mean stress. The final expression, ( K i), is a measure of the notch-root stress field in the location where crack initiation and early crack growth occur. The stress index ( k i) should be a useful tool for spot-weld fatigue design.  相似文献   

14.
In this paper, three-dimensional finite element analyses for spot welds with ideal geometry in lap-shear specimens of different materials and thicknesses were first conducted. The computational results indicate that the stress intensity factor and J integral solutions based on the finite element analyses agree well with the analytical solutions and that the analytical solutions can be used with a reasonable accuracy. Three-dimensional finite element analyses based on the micrographs of an aluminum 6111 resistance spot weld, an aluminum 5754 spot friction weld, and a dissimilar Al/Fe spot friction weld were also conducted. The computational results indicate that the stress intensity factor and J integral solutions based on the finite element analyses for the aluminum 6111 resistance spot weld and aluminum 5754 spot friction weld with complex geometry are in good agreement with the analytical solutions for the equivalent spot welds with ideal geometry. However, the stress intensity factor and J integral solutions based on the finite element analysis for the Al/Fe spot friction weld with complex geometry are completely different from the analytical solutions for the equivalent spot weld with ideal geometry. Different three-dimensional finite element analyses based on the meshes that represent different features of the complex geometry of the Al/Fe spot friction weld were then conducted. The computational results indicate that the stress intensity factor and J integral solutions for the Al/Fe spot friction weld based on the finite element analysis agree reasonably well with the analytical solutions for the equivalent spot weld with consideration of gap and bend. The computational and analytical results suggest that the stress intensity factor and J integral solutions based on the finite element analysis and the analytical solutions with consideration of gap and bend may be used to correlate with the fatigue crack growth patterns of Al/Fe spot friction welds observed in experiments.  相似文献   

15.
The effects of various surface treatment techniques on the fatigue crack growth performance of friction stir welded 2195 aluminum alloy were investigated. The objective was to reduce fatigue crack growth rates and enhance the fatigue life of welded joints. The crack growth rates were assessed and characterized for different peening conditions at a stress ratio (R) of 0.1, and 0.7. The surface and through-thickness residual stress distribution were also investigated and presented for the various regions in the weld. Tensile residual stresses introduced during the welding process were found to become significantly compressive, particularly after laser peening. The effect of the compressive stresses was deemed responsible for increasing the resistance to fatigue crack growth of the welds. The results indicate a significant reduction in fatigue crack growth rates using laser peening compared to shot peening and native welded specimens. This reduced fatigue crack growth rate was comparable to the base unwelded material.  相似文献   

16.
In the present study, the effect of welding process and procedure on fatigue crack initiation from notches and fatigue crack propagation in AISI 304L stainless steel welds was experimentally investigated. Full penetration, double-vee butt welds have been fabricated and CCT type specimens were used. Lawrence's local-stress approach (a two-stage model) is used to predict the fatigue life. The notch-root stress method was applied to calculate the fatigue crack initiation life, while the fatigue crack propagation life was estimated using fracture mechanics concepts. The fatigue notch factor is calculated using Lawrence's approach. Constant amplitude fatigue tests with stress ratio, R=0 were carried out using 100 kN servo-hydraulic DARTEC universal testing machine with a frequency of 30 Hz. The predicted lives were compared with the experimental values. A good agreement has been reached. It is found that the weld procedure has a stronger effect on lives to initiation than on propagation lives.  相似文献   

17.
The effects of temper condition and corrosion on the fatigue behavior of a laser beam welded Al–Cu–Mg–Ag alloy (2139) have been investigated. Natural aging (T3 temper) and artificial aging (T8 temper) have been applied prior to welding. Corrosion testing has been performed by exposing the welded specimens to a salt spray medium for 720 h. Aging influences the corrosion behavior of laser welds. In the T3 temper, corrosion attack is in the form of pitting in the weld area, while in the T8 temper corrosion is in the form of pitting and intergranular corrosion in the base metal. In the latter case corrosion is attributed to the presence of grain boundary precipitates. Corrosion degrades the fatigue behavior of 2139 welds. The degradation is equal for both the T3 and T8 tempers and for the corrosion exposure selected in this study corresponds to a 52% reduction in fatigue limit. In both cases fatigue crack initiation is associated with corrosion pits, which act as stress raisers. In the T3 temper, the fatigue crack initiation site is at the weld metal/heat affected zone interface, while for the T8 temper the initiation site is at the base metal. Fatigue crack initiation in uncorroded 2139 welds occurs at the weld toe at the root side, the weld reinforcement playing a principal role as stress concentration site. The fatigue crack propagates through the partially melted zone and the weld metal in all cases. The findings in this paper present useful information for the selection of appropriate heat treatment conditions, to facilitate control of the corrosion behavior in aluminium welds, which is of great significance for their fatigue performance.  相似文献   

18.
Lightweight magnesium alloys are increasingly used in automotive and other transportation industries for weight reduction and fuel efficiency improvement. The structural application of magnesium components requires proper welding and fatigue resistance to guarantee their durability and safety. The objective of this investigation was to identify failure mode and estimate fatigue life of ultrasonic spot welded (USWed) lap joints of an AZ31B-H24 magnesium alloy. It was observed that the solid-state USWed joints exhibited a superior fatigue life compared with other welding processes. Fatigue failure mode changed from interfacial failure to transverse-through-thickness crack growth with decreasing cyclic load level, depending on the welding energy. Fatigue crack initiation and propagation occurred from both the notch tip inside the faying surface and the edge of sonotrode indentation-footprints due to the presence of stress concentration. A life prediction model for the spot welded lap joints developed by Newman and Dowling was adopted to estimate the fatigue lives of the USWed magnesium alloy joints. The fatigue life estimation, based on the fatigue crack growth model with the global and local stress intensity factors as a function of kink length and the experimentally determined kink angle, agreed fairly well with the obtained experimental results.  相似文献   

19.
The weld toe is one of the most probable fatigue crack initiation sites in welded components. In this paper, the relative influences of residual stresses and weld toe geometry on the fatigue life of cruciform welds was studied. Fatigue strength of cruciform welds produced using Low Transformation Temperature (LTT) filler material has been compared to that of welds produced with a conventional filler material. LTT welds had higher fatigue strength than conventional welds. A moderate decrease in residual stress of about 15% at the 300 MPa stress level had the same effect on fatigue strength as increasing the weld toe radius by approximately 85% from 1.4 mm to 2.6 mm. It was concluded that residual stress had a relatively larger influence than the weld toe geometry on fatigue strength.  相似文献   

20.
对WNQ570桥梁钢及其对接焊缝进行了疲劳裂纹扩展速率和疲劳裂纹扩展门槛值测定试验,采用两种不同数据拟合方法分别得到具有95%保证率的疲劳裂纹扩展参数。结果表明:本批次的WNQ570钢材具有良好的疲劳裂纹扩展性能,其中对接焊缝疲劳裂纹扩展速率高于母材;在应力强度因子幅值处于10 MPa·m1/2~70 MPa·m1/2的常规区间时,基于单试件数据点的处理结果对应的裂纹扩展速率明显高于基于成组数据点的处理结果;WNQ570的疲劳裂纹扩展速率随应力比增加而增加,疲劳裂纹扩展门槛值随应力比增加而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号