首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.  相似文献   

2.
C-type animal lectins are a diverse family of proteins which mediate cell-surface carbohydrate-recognition events through a conserved carbohydrate-recognition domain (CRD). Most members of this family possess a carbohydrate-binding activity that depends strictly on the binding of Ca2+ at two sites, designated 1 and 2, in the CRD. The structural transitions associated with Ca2+ binding in C-type lectins have been investigated by determining high-resolution crystal structures of rat serum mannose-binding protein (MBP) bound to one Ho3+ in place of Ca2+, and the apo form of rat liver MBP. The removal of Ca2+ does not affect the core structure of the CRD, but dramatic conformational changes occur in the loops. The most significant structural change in the absence of Ca2+ is the isomerization of a cis-peptide bond preceding a conserved proline residue in Ca2+ site 2. This bond adopts the cis conformation in all Ca2+-bound structures, whereas both cis and trans conformations are observed in the absence of Ca2+. The pattern of structural changes in the three loops that interact with Ca2+ is dictated in large part by the conformation of the prolyl peptide bond. The highly conserved nature of Ca2+ site 2 suggests that the transitions observed in MBPs are general features of Ca2+ binding in C-type lectins.  相似文献   

3.
Two new intermediates are described which form in the dark as precursors to the light-induced assembly of the photosynthetic water oxidation complex (WOC) from the inorganic components. Mn2+ binds to the apo-WOC-PSII protein in the absence of calcium at a high-affinity site. By using a hydrophobic chelator to remove Mn2+ and Ca2+ from the WOC and nonspecific Fe3+, a new EPR signal becomes visible upon binding of Mn2+ to this site, characterized by six-line 55Mn hyperfine structure (DeltaHpp = 96 +/- 1 G) and effective g = 8.3. These features indicate a high-spin electronic ground state (S = 5/2) for Mn2+ and a strong ligand field with large anisotropy. This signal is eliminated if excess Ca2+ or Mg2+ is present. A second Mn2+ EPR signal forms in place of this signal upon addition of Ca2+ in the dark. The yield of this Ca-induced Mn signal is optimum at a ratio of 2 Mn/PSII, and saturates with increasing [Ca2+] >/= 8 mM, exhibiting a calcium dissociation constant of KD = 1.4 mM. The EPR signal of the Ca-induced Mn center at 25 K is asymmetric with major g value of approximately 2.04 (DeltaHpp = 380 G) and a shoulder near g approximately 3.1. It also exhibits resolved 55Mn hyperfine splitting with separation DeltaHpp = 42-45 G. These spectral features are diagnostic of a variety of weakly interacting Mn2(II, II) pairs with electronic spins that are magnetic dipolar coupled in the range of intermanganese separations 4.1 +/- 0.4 A, and commonly associated with one or two carboxylate bridges. The calcium requirement for induction of the Mn2(II,II) signal matches the value observed for steady-state O2 evolution (Michaelis constant, KM approximately 1.4 mM), and for light-induced assembly of the WOC by photoactivation. The Ca-induced Mn2(II,II) center is a more efficient electron donor to the photooxidized tyrosine radical, TyrZ+, than is the mononuclear Mn center present in the absence of Ca2+. The Ca-induced Mn2(II,II) signal serves as a precursor for photoactivation of the functional WOC and is abolished by the presence of Mg2+. Formation of the Mn2(II,II) EPR signal by addition of Ca2+ correlates with reduction of flash-induced catalase activity, indicating that calcium modulates the accessibility or reactivity of the Mn2(II,II) core with H2O2. We propose that calcium organizes the binding site for Mn ions in the apo-WOC protein and may even interact directly with the Mn2(II,II) pair via solvent or protein-derived bridging ligands.  相似文献   

4.
Cytoplasmic Ca2+ dissociation is sequential, and the Ca2+ ions bound to the nonphosphorylated ATPase are commonly represented as superimposed on each other, so that the superficial Ca2+ is freely exchangeable from the cytoplasm, whereas the deeper Ca2+ is not. Under conditions where ADP-sensitive phosphoenzyme accumulates (leaky vesicles, 5 degrees C, pH 8, 300 mM K+), luminal Ca2+ dissociation is sequential as well, so that the representation of two superimposed Ca2+ ions still holds on the phosphoenzyme, with the superficial Ca2+ facing the lumen freely exchangeable and the deeper Ca2+ blocked by the superficial Ca2+. Under the same conditions, we have investigated whether a prebuilt Ca2+ order is maintained during membrane translocation. Starting from a prebuilt order on the cytoplasmic side, we showed that the Ca2+ ions cannot be identified after translocation to the luminal side. The same result was obtained starting from a prebuilt order on the luminal side and following the luminal to cytoplasmic translocation. We conclude that the two Ca2+ ions are mixed during ATP-induced phosphorylation as well as during ADP-induced dephosphorylation.  相似文献   

5.
We investigated the effects of cytosolic Mg2+ on ryanodine receptor Ca2+ release channel (RyR) of bovine cardiac sarcoplasmic reticulum incorporated into planar lipid bilayers recording single channel activities. Channels were activated by > or = 0.1 microM Ca2+ in the cis solution. At constant Ca2+, application of Mg2+ (0.1-1 mM) to cis side decreased channel activity in a concentration-dependent manner. A half maximal blocking concentration (Kd) was 35 microM and a complete block was obtained at 1 mM. In the presence of 1 mM free Mg2+ in cis solution, the relation between the channel open probability (Po) and concentration of free Ca2+ in cis solution ([Ca2+]cis) shifted to the right, indicating the competition of Mg2+ and Ca2+. Blocking effects of Mg2+ on RyR were antagonized by increasing [Ca2+]cis > or = 0.1 mM. In the presence of 1 m Mg2+ and 1 mM Ca2+ in cis solution, the channel conductance was markedly depressed to approximately 400 pS (n = 7) from 603 +/- 40 pS (mean +/- S.D., n = 22) in the absence of Mg2+, indicating the flickering block. These results show that Mg2+ causes a direct inhibition of RyR in cardiac SR and this inhibition may be mediated through two different mechanisms. A competition of Mg2+ and Ca2+ at a Ca2+ sensitive site on the RyR and a flickery block of the open channel by Mg2+.  相似文献   

6.
During active cation transport, sarcoplasmic reticulum Ca2+-ATPase, like other P-type ATPases, undergoes major conformational changes, some of which are dependent on Ca2+ binding to high affinity transport sites. We here report that, in addition to previously described residues of the transmembrane region (Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989) Nature 339, 476-478), the region located in the cytosolic L6-7 loop connecting transmembrane segments M6 and M7 has a definite influence on the sensitivity of the Ca2+-ATPase to Ca2+, i.e. on the affinity of the ATPase for Ca2+. Cluster mutation of aspartic residues in this loop results in a strong reduction of the affinity for Ca2+, as shown by the Ca2+ dependence of ATPase phosphorylation from either ATP or Pi. The reduction in Ca2+ affinity for phosphorylation from Pi is observed both at acidic and neutral pH, suggesting that these mutations interfere with binding of the first Ca2+, as proposed for some of the intramembranous residues essential for Ca2+ binding (Andersen, J. P. (1995) Biosci. Rep. 15, 243-261). Treatment of the mutated Ca2+-ATPase with proteinase K, in the absence or presence of various Ca2+ concentrations, leads to Ca2+-dependent changes in the proteolytic degradation pattern similar to those in the wild type but observed only at higher Ca2+ concentrations. This implies that these effects are not due to changes in the conformational state of Ca2+-free ATPase but that changes affecting the proteolytic digestion pattern require higher Ca2+ concentrations. We conclude that aspartic residues in the L6-7 loop might interact with Ca2+ during the initial steps of Ca2+ binding.  相似文献   

7.
Rat brain microsomes accumulate Ca2+ at the expense of ATP hydrolysis. The rate of transport is not modulated by the monovalent cations K+, Na+, or Li+. Both the Ca2+ uptake and the Ca(2+)-dependent ATPase activity of microsomes are inhibited by the sulfated polysaccharides heparin, fucosylated chondroitin sulfate, and dextran sulfate. Half-maximal inhibition is observed with sulfated polysaccharide concentrations ranging from 0.5 to 8.0 micrograms/ml. The inhibition is antagonized by KCl and NaCl but not by LiCl. As a result, Ca2+ transport by the native vesicles, which in the absence of polysaccharides is not modulated by monovalent cations, becomes highly sensitive to these ions. Trifluoperazine has a dual effect on the Ca2+ pump of brain microsomes. At low concentrations (20-80 microM) it stimulates the rate of Ca2+ influx, and at concentrations > 100 microM if inhibits both the Ca2+ uptake and the ATPase activity. The activation observed at low trifluoperazine concentrations is specific for the brain Ca(2+)-ATPase; for the Ca(2+)-ATPases found in blood platelets and in the sarcoplasmic reticulum of skeletal muscle, trifluoperazine causes only a concentration-dependent inhibition of Ca2+ uptake. Passive Ca2+ efflux from brain microsomes preloaded with Ca2+ is increased by trifluoperazine (50-150 microM), and this effect is potentiated by heparin (10 micrograms/ml), even in the presence of KCl. It is proposed that the Ca(2+)-ATPase isoforms from brain microsomes is modulated differently by polysaccharides and trifluoperazine when compared with skeletal muscle and platelet isoforms.  相似文献   

8.
The identification of Ca2+ as a cofactor in photosynthetic O2 evolution has encouraged research into the role of Ca2+ in photosystem II (PSII). Previous methods used to identify the number of binding sites and their affinities were not able to measure Ca2+ binding at thermodynamic equilibrium. We introduce the use of a Ca2(+)-selective electrode to study equilibrium binding of Ca2+ to PSII. The number and affinities of binding sites were determined via Scatchard analysis on a series of PSII membrane preparations progressively depleted of the extrinsic polypeptides and Mn. Untreated PSII membranes bound approximately 4 Ca2+ per PSII with high affinity (K = 1.8 microM) and a larger number of Ca2+ with lower affinity. The high-affinity sites are assigned to divalent cation-binding sites on the light-harvesting complex II that are involved in membrane stacking, and the lower-affinity sites are attributed to nonspecific surface-binding sites. These sites were also observed in all of the extrinsic polypeptide- and Mn-depleted preparations. Depletion of the extrinsic polypeptides and/or Mn exposed additional very high-affinity Ca2(+)-binding sites which were not in equilibrium with free Ca2+ in untreated PSII, owing to the diffusion barrier created by the extrinsic polypeptides. Ca2(+)-depleted PSII membranes lacking the 23 and 17 kDa extrinsic proteins bound an additional 2.5 Ca2+ per PSII with K = 0.15 microM. This number of very high-affinity Ca2(+)-binding sites agrees with the previous work of Cheniae and co-workers [Kalosaka, K., et al. (1990) in Current Research in Photosynthesis (Baltscheffsky, M., Ed.) pp 721-724, Kluwer, Dordrecht, The Netherlands] whose procedure for Ca2+ depletion was used. Further depletion of the 33 kDa extrinsic protein yielded a sample that bound only 0.7 very high-affinity Ca2+ per PSII with K = 0.19 microM. The loss of 2 very high-affinity Ca2(+)-binding sites upon depletion of the 33 kDa extrinsic protein could be due to a structural change of the O2-evolving complex which lost 2-3 of the 4 Mn ions in this sample. Finally, PSII membranes depleted of Mn and the 33, 23, and 17 kDa extrinsic proteins bound approximately 4 very high-affinity Ca2+ per PSII with K = 0.08 microM. These sites are assigned to Ca2+ binding to the vacant Mn sites.  相似文献   

9.
The conditions of nucleotide binding to native, though partly purified, Ca(2+)-ATPase from SR as well as the stoichiometry of nucleotide and strontium binding and the phosphorylation capacity was reevaluated. Binding of MgADP appeared to be aberrant whereas even high-affinity binding of [14C]-ADP took place in the absence of Mg2+. Also low-affinity ATP binding was possible in the absence of divalent cations. A heterogeneity in ADP binding compatible with a two-component model in the absence of thapsigargin was changed to an apparent homogeneity of low-affinity receptors following a mole:mole interaction of enzyme and thapsigargin. Since the affinity of both components was reduced by thapsigargin, high- as well as low-affinity ADP binding seem to be specific and probably to the substrate receptor proper. Analysis of ADP binding isotherms in the absence of Mg2+ according to a model of two independent populations of sites was compatible with a binding capacity of 8.49 +/- 0.43 nmoles/mg protein corresponding to a molecular mass of 118 +/- 6 kD per ADP site. The same total binding capacity was found for ATP. The phosphorylation capacity corresponded to more than one and less than two approximately P per two 110-kD peptides (formally one approximately P per 154 kD protein). Specific binding of Ca2+ and the congener Sr2+ to SR Ca(2+)-ATPase was compatible with their interaction with a single population of sites. The binding capacity was equal to one divalent cation per nucleotide binding peptide. The binding of one nucleotide and one divalent cation per approximately 110 kD peptide and the absence of cooperativity in divalent cation binding might imply that Ca(2+)-ATPase works as a monomer.  相似文献   

10.
In non-excitable cells, a Ca2+ entry pathway is opened after the depletion of intracellular Ca2+ store sites. We have tried to estimate the sensitivity of this pathway to Ca2+ release using bovine aortic endothelial cells. Single application of a high concentration (30 microM) of ATP released almost all stored Ca2+ in Ca(2+)-free extracellular solution, whereas a low concentration of ATP (30 nM) produced a partial (57.3 +/- 3.0%) release of Ca2+. By 10 min of Ca2+ re-perfusion, the Ca2+ store site was reloaded to 97.1% of its initial filling state. When thapsigargin was applied to this cell in Mn2+ solution, Mn(2+)-induced quenching of fura-2 dye started when 19.3 +/- 5.3% of Ca2+ release, produced by 30 nM ATP, had occurred. Therefore, Ca2+ release required for Mn2+ entry was estimated as 11.1 +/- 3.0% of stored Ca2+. These results indicate that intracellular Ca2+ concentration is controlled dynamically by simultaneously occurring Ca2+ release and entry in bovine aortic endothelial cells.  相似文献   

11.
Synapsins I and II are abundant phosphoproteins that are localized to synaptic vesicles and have essential functions in regulating synaptic vesicle exocytosis. Synapsins contain a single evolutionarily conserved, large central domain, the C-domain, that accounts for the majority of their sequences. Unexpectedly, the crystal structure of the C-domain from synapsin I revealed that it is structurally closely related to several ATPases despite the absence of sequence similarities (Esser, L., Wang, C.-R., Hosaka, M., Smagula, C. S., Südhof, T. C., and Deisenhofer, J. (1998) EMBO J., in press). We now show that the C-domains of both synapsin I and synapsin II constitute high affinity ATP-binding modules. The two C-domains exhibit similar ATP affinities but are differentially regulated; ATP binding to synapsin I is Ca(2+)-dependent whereas ATP binding to synapsin II is Ca(2+)-independent. In synapsin I, the Ca2+ requirement for ATP binding is mediated by a single, evolutionarily conserved glutamate residue (Glu373) at a position where synapsin II contains a lysine residue. Exchange of Glu373 for lysine converts synapsin I from a Ca(2+)-dependent protein into a Ca(2+)-independent ATP-binding protein. Our studies suggest that synapsins I and II function on synaptic vesicles as ATP-binding proteins that are differentially regulated by Ca2+.  相似文献   

12.
S100P is a 95 amino acid residue protein which belongs to the S100 family of proteins containing two putative EF-hand Ca2+-binding motifs. In order to characterize conformational properties of S100P in the presence and absence of divalent cations (Ca2+, Mg2+ and Zn2+) in solution, we have analyzed hydrodynamic and spectroscopic characteristics of wild-type and several variants (Y18F, Y88F and C85S) of S100P using equilibrium centrifugation, gel-filtration chromatography, circular dichroism and fluorescence spectroscopies. Analysis of the experimental data shows the following. (1) In agreement with the predictions there are two Ca2+-binding sites in the S100P molecule with different affinity; the high affinity binding site has an apparent binding constant of approximately 10(7) M-1 and the low affinity binding site has an apparent binding constant of approximately 10(4) M-1. (2) The high and low affinity Ca2+-binding sites are located in the C and N-terminal parts of the S100P molecule, respectively. (3) These C and N-terminal sites can also bind other divalent ions. The C-terminal site binds Zn2+ (with relatively low affinity approximately 10(3) M-1), but not Mg2+. The N-terminal site binds Mg2+ with the apparent binding constant approximately 10(2) M-1. (4) Binding of Ca2+ to the C-terminal site and binding of Mg2+ to the N-terminal site occur in the physiological concentration range of these ions (micromolar for Ca2+ and millimolar for Mg2+). (5) Oligomerization state of the S100P molecule appears to change upon addition of Ca2+. On the basis of these observations a plausible model for S100P as a Ca2+/Mg2+ switch has been proposed.  相似文献   

13.
Phospholipid (PL) scramblase is a 35.1 kDa plasma membrane protein that mediates the accelerated transbilayer migration of plasma membrane PL in activated, injured, or apoptotic cells exposed to elevated intracellular Ca2+. We recently identified a conserved segment in the PL scramblase polypeptide (residues Asp273 to Asp284) that is essential for its PL-mobilizing function and was presumed to contain the Ca2+ binding site of the protein (Zhou, Q., Sims, P. J., and Wiedmer, T. (1998) Biochemistry 37, 2356-2360). Whereas the sequence of this peptide segment resembles that of known Ca2+-binding loops within EF-hand containing proteins, it is unusual in being a single such loop in the entire protein and in being closely spaced to the predicted transmembrane helix (Ala291-Gly309). To gain insight into how Ca2+ activates the PL-mobilizing function of PL scramblase, we analyzed conformational changes associated with occupancy of this putative Ca2+ binding site. In addition to activation by Ca2+, the PL-mobilizing function of PL scramblase was found to be activated by other ions, with apparent affinities Tb3+, La3+ > Ca2+ > Mn2+ > Zn2+ > Sr2+ > Ba2+, Mg2+. Evidence for coordinate binding of metal ion by the polypeptide was provided by resonance energy transfer from protein Trp to Tb3+, which was competed by excess Ca2+. Metal binding to PL scramblase was accompanied by increased right-angle light scattering and by a prominent change in circular dichroism, suggesting that coordinate binding of the metal ion induces a conformational change that includes self-aggregation of the polypeptide. Consistent with this interpretation, addition of Ca2+ was found to protect PL scramblase from proteolysis by trypsin both in detergent solution as well as in situ, within the erythrocyte membrane. Mutation in the segment Asp273-Asp284 reduced Tb3+ incorporation and attenuated the change in CD spectrum induced by bound metal ligand, confirming that this suspected EF-hand loopike segment of the polypeptide directly contributes to the Ca2+ binding site.  相似文献   

14.
The effects of lowering extracellular Na+ concentration [Na+]o, on cytosolic Ca2+ concentration, [Ca2+]c were examined by a microfluorimetric method using fura-2 in perifused preparations of isolated rat pancreatic islets. The total replacement of extracellular Na+ (Na+o) by equimolar N-methyl-D-(--)-glucamine caused a rapid rise in [Ca2+]c, and partial replacement of Na+o resulted in correlative rises in [Ca2+]c in accordance with the magnitude of reduced [Na+]o. The rise in [Ca2+]c induced by Na+o removal was strongly inhibited in the Ca2+o-deficient environment or by Ni2+. The [Ca2+]c rise, however, remained almost unchanged in the presence of nifedipine or SK&F 96365, and was enhanced by the addition of ouabain. The electrochemical gradients for Ca2+ (delta mu Ca2+) and Na+ (delta mu Na+) were calculated to be 39.08 and 12.8 kJ/mol, respectively, in this study, indicating a stoichiometry of 3Na+: 1 Ca2+. These results indicate that, in rat pancreatic islets, the rise in [Ca2+]c induced by lowering [Na+]o is mainly due to Ca2+ entry medicated by the Na+/Ca2+ exchanger operating with the stoichiometry of 3Na+:1 Ca2+, and that the Na+/Ca2+ exchanger plays an important role in maintaining stable-state [Ca2+]c.  相似文献   

15.
In this study, passive Ca2+ binding was determined in ventricular homogenates (VH) from neonatal (4-6 days) and adult rats, as well as in digitonin-permeabilized adult ventricular myocytes. Ca2+ binding sites, both endogenous and exogenous (Indo-1 and BAPTA) were titrated. Sarcoplasmic reticulum and mitochondrial Ca2+ uptake were blocked by thapsigargin and Ru360, respectively. Free [Ca2+] ([Ca2+]F) was measured with Indo-1 and bound Ca2+ ([Ca2+]B) was the difference between [Ca2+]F and total Ca2+. Apparent Ca2+ dissociation constants (Kd) for BAPTA and Indo-1 were increased by 10-20 mg VH protein/ml (from 0.35 to 0.92 microM for Indo-1 and from 0.20 to 0.76 microM for BAPTA) and also by ruthenium red in the case of Indo-1. Titration with successive CaCl2 additions (2.5-10 nmoles) yielded delta[Ca2+]B/delta[Ca2+]F for the sum of [Ca2+]B at all three classes of binding sites. From this function, the apparent number of endogenous sites (Ben) and their Kd (Ken) were determined. Similar Ken values were obtained in neonatal and adult VH, as well as in adult myocytes (0.68 +/- 0.14 microM, 0.69 +/- 0.13 microM and 0.53 +/- 0.10 microM, respectively). However, Ben was significantly higher in adult myocytes than in adult VH (1.73 +/- 0.35 versus 0.70 +/- 0.12 nmol/mg protein, P < 0.01), which correspond to approximately 300 and 213 mumol/l cytosol. This indicates that binding sites are more concentrated in myocytes than in other ventricular components and that Ben determined in VH underestimates cellular Ben by 29%. Although Ben values in nmol/mg protein were similar in adult and neonatal VH (0.69 +/- 0.12), protein content was much higher in adult ventricle (125 +/- 7 versus 80 +/- 1 mg protein/g wet weight, P < 0.01). Expressing Ben per unit cell volume (accounting for fractional mitochondrial volume, and 29% dilution in homogenate), the passive Ca2+ binding capacity at high-affinity sites is approximately 300 and 176 mmol/l cytosol in adult and neonatal rat ventricular myocytes, respectively. Additional estimates suggest that passive Ca2+ buffering capacity in rat ventricle increases markedly during the first two weeks of life and that adult levels are attained by the end of the first month.  相似文献   

16.
The effects of temperature, dielectric permeability and ionic strength on the activity of purified Ca2+, Mg(2+)-ATPase solubilized from myometrial sarcolemma have been studied under saturation of the enzyme with Ca2+, Mg2+ and ATP. The values of activation energy calculated from Arrhenius plots for both ATP hydrolase reactions catalysed by solubilized and reconstituted into azolectin liposomes Ca2+, Mg(2+)-ATPase and Mg2+, ATP-dependent Ca2+ transport by the reconstituted enzyme were 56.4 +/- 1.5, 68.0 +/- 5.1 and 63.1 +/- 2.9 kJ/mol, respectively. Analysis of experimental data in terms of the Laidler-Scatchard and Bronsted-Bjerrum theories revealed that the separation of the reaction products--the chelate MgADP complex--from the active site of the enzyme bearing one unity positive charge is the limiting step of the Ca2+, Mg(2+)-dependent enzymatic ATP-hydrolysis under conditions of substrate saturation. The values of the electrostatic components of the free energy, enthalpy and entropy of activation of the ATP hydrolase reaction were 46.6 +/- 0.3 kJ/mol, -(20.5 +/- 0.4) kJ/mol and -(214.2 +/- 4.3) J/(mol.degrees K), respectively. The nonelectrostatic component of activation enthalpy was 76.9 kJ/mol. The results obtained suggest that changes in polarity of the incubation medium markedly affect the activity of transport Ca2+, Mg(2+)-ATPase solubilized from smooth muscle cell plasma membranes and that the electrostatic interactions between the enzyme active site and specific reagents (MgADP, in particular) significantly contribute to the energetics of the ATP hydrolase reaction.  相似文献   

17.
Peroxidation of substrates such as ascorbic acid, pyrogallol, or ferulic acid, as well as indole acetic acid oxidation catalyzed by wheat germ peroxidase (WGP)2 C2, were found to be activated by Ca2+. This activation is independent of the stabilizing effect of structural Ca2+ reported for peroxidases. Steady state kinetics of ferulic acid oxidation catalyzed by WGP C2 showed an increase in the rate of compound I formation and of compound II decomposition in the presence of the ion, evidenced as an increase in rate constants k1, from 8.9 x 10(5) to 4.5 x 10(5) M-1 cm-1, and k3, from 4.4 x 10(5) to 1.1 x 10(6) M-1 cm-1. The dissociation constant Kd, for the cyanide derivative of the enzyme showed a marked decrease from 220 to 34 microM in the presence of Ca2+, thus implying an effect of the ion in the H2O2 binding step. In the presence of Ca2+, a conformational change in the protein was revealed by tryptophan fluorescence, providing a basis for the activation mechanism. Other peroxidases such as horseradish peroxidase and WGP C3 were not activated by Ca2+. The results suggest the existence of a physiological mechanism of control of peroxidase isozymes activity mediated by Ca2+.  相似文献   

18.
A proline residue flanked by two polar residues is a highly conserved sequence motif in the Ca2+- and carbohydrate-binding site of C-type animal lectins. Crystal structures of several C-type lectins have shown that the two flanking residues are only observed to act as Ca2+ ligands when the peptide bond preceding the proline residue is in the cis conformation. In contrast, structures of the apo- and one-ion forms of mannose-binding proteins (MBPs) reveal that, when the Ca2+-binding site is empty, the peptide bond preceding the proline can adopt either the cis or trans conformation, and distinct structures in adjacent regions are associated with the two proline isomers. In this work, measurements of Ca2+-induced changes in intrinsic tryptophan fluorescence, and fluorescence energy transfer from tryptophan to Tb3+, reveal a slow conformational change in rat liver MBP (MBP-C) accompanying the binding of either Ca2+ or Tb3+. The Ca2+-induced increase in intrinsic tryptophan fluorescence shows biphasic kinetics: a burst phase with a rate constant greater than 1 s(-1) is followed by a slow phase with a single-exponential rate constant ranging from 0.01 to 0.05 s(-1) (36 degrees C) that depends on the concentration of Ca2+. Likewise, addition of EGTA to Ca2+-bound or Tb3+-bound MBP-C causes a decrease in intrinsic tryptophan fluorescence with biphasic kinetics consisting of a burst phase with a rate constant greater than 1 s(-1), followed by a slow phase with a single-exponential rate constant of 0.065 s(-1). In contrast, Tb3+ fluorescence produced by resonant energy transfer from MBP-C decreases in a single kinetic phase with a rate constant greater than 1 s(-1), implying that the slow change in tryptophan fluorescence monitors a conformational change that is not limited in rate by ion dissociation. The rate constants of the slow phases accompanying Ca2+ binding and release are strongly affected by temperature and are weakly accelerated by the prolyl isomerase cyclophilin. These data strongly suggest that the binding of either Ca2+ or Tb3+ to MBP-C is coupled to a conformational change that involves the cis-trans isomerization of a peptide bond. Fitting of the data to kinetic models indicates that, in the absence of Ca2+, the proline in approximately 80% of the molecules is in the trans conformation. The slow kinetics associated with cis-trans proline isomerization may be exploited by endocytic receptors to facilitate sorting of carbohydrate-bearing ligands from the receptor in the endosome.  相似文献   

19.
The relationship between the agonist-sensitive Ca2+ pool and those discharged by the Ca2+ -ATPase inhibitor thapsigargin (TG) were investigated in canine tracheal smooth muscle cells (TSMCs). In fura-2-loaded TSMCs, 5-hydroxytryptamine (5-HT) stimulated a rapid increase in intracellular Ca2+ ([Ca2+]i), followed by a sustained plateau phase that was dependent on extracellular Ca2+. In such cells, TG produced a concentration-dependent increase in [Ca2+]i, which remained elevated over basal level for several minutes and was substantially attenuated in the absence of extracellular Ca2+. Application of 5-HT after TG demonstrated that the TG-sensitive compartment partly overlapped the 5-HT-sensitive stores. Pre-treatment of TSMCs with TG significantly inhibited the increase in [Ca2+]i induced by 5-HT in a time-dependent manner. Similar results were obtained with two other Ca2+ -ATPase inhibitors, cyclopiazonic acid and 2,5-di-t-butylhydroquinone. Although these inhibitors had no effect on phosphoinositide hydrolysis, Ca2+ -influx was stimulated by these agents. These results suggest that depletion of the agonist-sensitive Ca2+ stores is sufficient for activation of Ca2+ influx. Some characteristics of the Ca2+ -influx activated by depletion of internal Ca2+ stores were compared with those of the agonist-activated pathway. 5-HT-stimulated Ca2+ influx was inhibited by La3+, membrane depolarisation, and the novel Ca2+ -influx blocker 1-?beta-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenethyl?-1H-imidazole hydrochloride (SKF96365). Likewise, activation of Ca2+ influx by TG also was blocked by La3+, membrane depolarisation, and SKF96365. These results suggest that (1) in the absence of PI hydrolysis, depletion of the agonist-sensitive internal Ca2+ stores in TSMCs is sufficient for activation of Ca2+ influx, and (2) the agonist-activated Ca2+ influx pathway and the influx pathway activated by depletion of the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool are indistinguishable.  相似文献   

20.
The specific inhibitor of the gamma-aminobutyric acid (GABA) carrier, NNC-711, (1-[(2-diphenylmethylene)amino]oxyethyl)- 1,2,5,6-tetrahydro-3-pyridine-carboxylic acid hydrochloride, blocks the Ca(2+)-independent release of [3H]GABA from rat brain synaptosomes induced by 50 mM K+ depolarization. Thus, in the presence of this inhibitor, it was possible to study the Ca(2+)-dependent release of [3H]GABA in the total absence of carrier-mediated release. Reversal of the Na+/Ca2+ exchanger was used to increase the intracellular free Ca2+ concentration ([Ca2+]i) to test whether an increase in [Ca2+]i alone is sufficient to induce exocytosis in the absence of depolarization. We found that the [Ca2+]i may rise to values above 400 nM, as a result of Na+/Ca2+ exchange, without inducing release of [3H]GABA, but subsequent K+ depolarization immediately induced [3H]GABA release. Thus, a rise of only a few nanomolar Ca2+ in the cytoplasm induced by 50 mM K+ depolarization, after loading the synaptosomes with Ca2+ by Na+/Ca2+ exchange, induced exocytotic [3H]GABA release, whereas the rise in cytoplasmic [Ca2+] caused by reversal of the Na+/Ca2+ exchanger was insufficient to induce exocytosis, although the value for [Ca2+]i attained was higher than that required for exocytosis induced by K+ depolarization. The voltage-dependent Ca2+ entry due to K+ depolarization, after maximal Ca2+ loading of the synaptosomes by Na+/Ca2+ exchange, and the consequent [3H]GABA release could be blocked by 50 microM verapamil. Although preloading the synaptosomes with Ca2+ by Na+/Ca2+ exchange did not cause [3H]GABA release under any conditions studied, the rise in cytoplasmic [Ca2+] due to Na+/Ca2+ exchange increased the sensitivity to external Ca2+ of the exocytotic release of [3H]GABA induced by subsequent K+ depolarization. Thus, our results show that the vesicular release of [3H]GABA is rather insensitive to bulk cytoplasmic [Ca2+] and are compatible with the view that GABA exocytosis is triggered very effectively by Ca2+ entry through Ca2+ channels near the active zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号