首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The need for biochemical quantities of nonmuscle actin has been increased by observations that actin isoform composition of a cell influences the cell's motile and structural properties. In addition, the number of actin binding proteins that exhibit different binding interactions with beta- and gamma-actin compared to alpha-actin from skeletal muscle is growing. We report a procedure designed to purify actin from nonmuscle tissues employing extraction of monomeric actin from tissues with high concentrations of Tris, chromatography on DE-53 cellulose, and affinity chromatography of DNase I-agarose. The preparation is easy to perform and yields quantities of nonmuscle actin sufficient for biochemical and cell biological assays. Actin from bovine erythrocytes and from brains of adult and embryonic chickens was obtained using this method, which can be readily used with other sources of tissue. Coomassie-Blue-stained SDS gels of the purified actin show no contaminants; capping protein, a common contaminant of actin preparations, is absent by immunoblotting. This method for purifying nonmuscle actin will be useful to investigate functional differences in the biology of actin isoforms or their regulating proteins.  相似文献   

5.
During development of the ascidian Halocynthia roretzi, the tadpole larva hatched from the tailbud embryo metamorphoses to the adult with a body wall muscle. Although the adult body wall muscle is morphologically nonsarcomeric smooth muscle, it contains a troponin complex consisting of three subunits (T, I, and C) as do vertebrate striated muscles. Different from vertebrate troponins, however, the smooth muscle troponin promotes actin-myosin interaction in the presence of high concentration of Ca2+, and this promoting property is attributable to troponin T. To address whether the embryonic/larval tail striated muscle and the adult smooth muscle utilize identical or different regulatory machinery, we cloned troponin T cDNAs from each cDNA library. The embryonic and the adult troponin Ts were encoded by distinct genes and shared only < 60% identity with each other. These isoforms were specifically expressed in the embryonic/larval tail striated muscle and the adult smooth muscle, respectively. These results may imply that these isoforms regulate actin-myosin interaction in different manners. The adult troponin T under forced expression in mouse fibroblasts was unexpectedly located in the nuclei. However, a truncated protein with a deletion including a cluster of basic amino acids colocalized with tropomyosin on actin filaments. Thus, complex formation with troponin I and C immediately after the synthesis is likely to be essential for the protein to properly localize on the thin filaments.  相似文献   

6.
We show that different Drosophila actin isoforms are not interchangeable. We sequenced the six genes that encode conventional Drosophila actins and found that they specify amino acid replacements in 27 of 376 positions. To test the significance of these changes we used directed mutagenesis to introduce 10 such conversions, independently, into the Act88F flight muscle-specific actin gene. We challenged these variant actins to replace the native protein by transforming germline chromosomes of a Drosophila strain lacking flight muscle actin. Only one of the 10 reproducibly perturbed myofibrillar function, demonstrating that most isoform-specific amino acid replacements are of minor significance. In order to establish the consequences of multiple amino acid replacements, we substituted portions of the Drosophila Act88F actin gene with corresponding regions of genes encoding other isoforms. Only one of five constructs tested engendered normally functioning flight muscles, and the severity of myofibrillar defects correlated with the number of replacements within the chimeric genes. Finally, we completely converted the flight muscle actin-encoding gene to one specifying a nonmuscle isoform, a change entailing a total of 18 amino acid replacements. Transformation of flies with this construct resulted in disruption of flight muscle structure and function. We conclude that actin isoform sequences are not equivalent and that effects of the amino acid replacements, while minor individually, collectively confer unique properties.  相似文献   

7.
Actins comprise six isoforms of which the nonmuscle isoforms beta-/gamma-actins are expressed by all eukaryotic cells. The expression pattern of one of the muscle actin isoforms, alpha-sm actin, previously believed to be restricted to smooth muscle, has been broadened to encompass activated fibroblasts (myofibroblasts) as well. The significance of this molecular conversion has remained largely unknown. We have recently shown that a reduction in filamentous alpha-sm actin by electroinjected specific antibodies or antisense oligodeoxynucleotides leads to increased motility in breast myofibroblasts (R?nnov-Jessen, L., Petersen, O. W. J. Cell Biol. 1996, 134, 67-80). In the present study we have expanded on the functional significance of actin isotypes in fibroblasts from the opposite point of view, namely filamentous nonmuscle actin. Nonmuscle actins in fibroblasts and myofibroblasts were ADP-ribosylated by Clostridium botulinum C2 toxin. The substrate for C2 toxin is globular actin, which upon ribosylation cannot incorporate into microfilaments. The pattern of actin ADP-ribosylation in (myo)fibroblasts in the presence of [32P]NAD was analyzed by isoelectric focusing, fluorography and immunoblotting. The influence of C2 toxin on microfilaments in intact cells was further assessed by immunofluorescence, and motility was measured in a mass migration assay and by computerized video time-lapse microscopy. We show here that C2 toxin specifically ribosylates beta- and gamma-actin in both fibroblasts and myofibroblasts. Whereas fibroblasts rapidly round up and stop migrating when filamentous beta-/gamma-actin is reduced by short-term ADP-ribosylation, myofibroblasts maintain their flattened morphology and a basic low motility.  相似文献   

8.
From the pharyngeal baskets of the ascidians Microcosmus sulcatus and Phallusia mammilata we have purified an 85-kDa protein that is characterized as a member of the gelsolin family. These proteins from both species show the same behaviour in functional assays. The ascidian gelsolin binds two actin monomers in a highly cooperative manner. This complex formation is Ca(2+)-dependent, but not completely reversible, as on removal of Ca2+ one actin monomer dissociates leaving a 1:1 complex between gelsolin and G-actin. The properties of F-actin severing and G-actin nucleation depend on the presence of free Ca2+ in a micromolar range, with half maximum activation at about 3 x 10(-6) M. The protein becomes inactivated when Ca2+ concentrations of 0.5 mM are exceeded. Fragmentation of F-actin by the ascidian gelsolin is comparably fast to that of vertebrate gelsolin. A steady state of actin fragmentation is reached within 2-4 s. Promotion of G-actin nucleation is also comparable to that of vertebrate gelsolin. Regarding functional aspects, the ascidian gelsolin is more closely related to vertebrate gelsolin than to an arthropod gelsolin from crayfish tail muscle.  相似文献   

9.
To elucidate the diversity of troponin C (TnC) during chordate evolution, we determined the organization of TnCs from the amphioxus, the lamprey, and the frog. Like the ascidian, the amphioxus possesses a single gene of TnC, and the fundamental gene structure is identical with the ascidian TnC. However, because alternative splicing does not occur in amphioxus, the potential for generation of TnC isoforms through this event arises only in the ascidian lineage. From the frog Xenopus laevis, two distinct cDNAs encoding fTnC isoforms and a single s/cTnC cDNA were determined. The duplication of the fTnC gene may be a character of only Xenopus or closely related species. The lamprey possesses two cDNAs each encoding fTnC and s/cTnC. The lamprey is the earliest diverged species among vertebrates, and thus it is supposed that the presence of both fTnC and s/cTnC is universal among vertebrate species, and that the gene duplication might have occurred at a vertebrate ancestor after the protochordate/vertebrate divergence. The position of the 4th intron is 3.24/0 in protochordate TnC genes, but at 3. 11/2 in vertebrate fTnCs and s/cTnCs. It is suggested that the 4th intron sliding might have occurred prior to the gene duplication.  相似文献   

10.
Dendritic spines contain high concentrations of actin, but neither the isoforms involved nor the mechanism of accumulation is known. In situ hybridization with specific probes established that beta- and gamma-cytoplasmic actins are selectively expressed at high levels by spine-bearing neurons. Transfecting cultured hippocampal neurons with epitope-tagged actin isoforms showed that cytoplasmic beta- and gamma-cytoplasmic actins are correctly targeted to spines, whereas alpha-cardiac muscle actin, which is normally absent from neurons, formed aggregates in dendrites. The transfected actin cDNAs contained only coding domains, suggesting that spine targeting involves amino acid sequences in the proteins, an interpretation supported by experiments with chimeric cDNAs in which C-terminal actin sequences were found to be determinative in spine targeting. By contrast to actin, microtubule components, including tubulin and MAP2, were restricted to the dendritic shaft domain. The close association of cytoplasmic actins with spines together with their general involvement in cell surface motility further supports the idea that actin motility-based changes in spine shape may contribute to synaptic plasticity.  相似文献   

11.
For more than a century, ascidians have been a widely used system for classic embryological studies. Ascidians possess simple, well-defined cell-lineages, compact genomes, rapid development and world-wide distribution. Transgenic DNA can be introduced into developing embryos using simple electroporation methods. The ascidian larva represents the most simplified chordate body plan and provides a useful model for studying the molecular pathways underlying the morphogenesis and differentiation of the notochord and neural tube.  相似文献   

12.
13.
Whether the ancestral chordates were free-swimming or sessile is a longstanding question that remains to be settled. Vertebrates and amphioxi are free-swimming, but the most basal chordate subphylum (the urochordates) includes both sessile and free-swimming species. Here, 1 report molecular phylogenetic analyses of 18S rDNA of urochordates to deduce which lifestyle is ancestral. This revealed a close relationship between salps and doliolids and paraphyly of the ascidians. An early divergence of larvaceans, which show a tadpole-like body plan throughout life, is also supported by the analyses. Based on this phylogeny, a free-swimming ancestor for chordates is more parsimonious than a sessile ancestor. The evolutionary history of various lifestyles of chordates from this ancestral form is proposed.  相似文献   

14.
Caldesmon is an actin/calmodulin/tropomyosin protein located in the thin filaments of smooth muscle cells and microfilaments of nonmuscle cells. Two isoforms of caldesmon, h- and l-types, shown to exist in vertebrate smooth and nonmuscle cells respectively, are produced by alternative splicing of the caldesmon mRNA encoded by a single gene. To study the expression of smooth muscle specific h-caldesmon during the differentiation of mesenchymal cells into smooth muscle cells, soluble protein and total RNA from the gizzard primordium in the gut region of 5-day and gizzards of 7-, 9-, 13-, 17- and 21-day embryos and 2-days post-hatch chicks were extracted and analyzed for caldesmon expression at both protein and mRNA levels. Western blot analysis of proteins and immunofluorescence microscopy of tissue section were carried out using an antibody specific for h-caldesmon. Total RNA was analyzed by Northern blotting using a caldesmon cDNA probe, and h- and l-caldesmon cDNAs were identified due to the difference in their molecular sizes (4.8 and 4.1 kb respectively). The mRNA was also analyzed by reverse transcribed-polymerase chain reaction (RT-PCR) and Southern blot analysis. Our results show that the I-caldesmon mRNA was expressed at higher levels in the gizzard primordium during the early stages of development, and decreased gradually during growth. The h-caldesmon protein and mRNA, not expressed at day 5, is minimally expressed at day 7 and is fully turned on by day 9. Additionally, sequence analyses of the RT-PCR products of I-caldesmon showed that it lacked the spacer region, as predicted. RT-PCR analysis of total RNA gave two h-caldesmon fragments. These two fragments were identified as two different isoforms of h-caldesmon since they both contained the spacer region. They also showed homology in the region of exon 4 had differences in the region of exon 3b.  相似文献   

15.
16.
Diabetes mellitus is a major risk factor for atherosclerosis. In atherosclerotic lesions, arterial smooth muscle cells (SMC) change from a contractile to a synthetic phenotype characterized by active proliferation. A similar phenotype modulation occurs in vitro when isolated arterial SMC are grown in culture and is characterized by both changes in cell morphology and a typical switch in actin isoform expression. In this study, we examined the influence of streptozotocin (STZ)-induced diabetes on the differentiation state and the phenotype modulation of cultured rat aortic SMC. We used transmission electron microscopy to study the fine structure of STZ-diabetic and non-diabetic SMC in primary culture and immunological methods for the determination of the proportions of alpha-smooth muscle actin (alpha-SM) and nonmuscle beta-actin (beta-NM) isoforms. Cultured STZ-diabetic SMC exhibited a large cytoplasmic volume, rich in rough endoplasmic reticulum, when compared with cultured non-diabetic SMC. alpha-SM, organized in stress fibers, was less homogeneously and abundantly distributed and by contrast, beta-NM was more abundant in STZ-diabetic than in non-diabetic SMC. Cytofluorimetric analyses demonstrated that the alpha-SM content was reduced in freshly STZ-diabetic SMC. Furthermore, during logarithmic growth of cultured SMC, the decrease of alpha-SM was more important in STZ-diabetic than in non-diabetic SMC. Immunoblotting of actin isoforms confirmed that expression of beta-NM was more important in STZ-diabetic than in non-diabetic SMC even in freshly isolated cells. The results suggest that SMC from STZ-diabetic rats express a more dedifferentiated state and undergo a more rapid phenotypic modulation in primary cultures than SMC from non-diabetic rats. Therefore, diabetes could induce changes in the phenotype of arterial SMC which might be associated with the onset or progression of the atherogenic process.  相似文献   

17.
18.
Actin, together with associated proteins, such as myosin, cross-linking or capping proteins, has been observed in all eukaryotic cells. Presence of actin or actin-like proteins has also been reported in prokaryotic organisms belonging to the cyanobacteria. Our aim was first to extend the characterization of an actin-like protein to another prokaryotic cell, i.e. Spirulina, then to compare the antigenic reactivity of this new protein with that of Synechocystis and skeletal actins. We observed that some of the conserved antigenic epitopes corresponded to actin regions known to interact with cross-linking proteins. We also report for the first time that alpha-actinin and filamin purified from chicken gizzard both interact with a prokaryotic actin-like protein. Finally, we searched for the occurrence of a cross-linking protein in these cyanobacteria and identified a 105-kDa protein as an alpha-actinin-like protein using specific antibodies.  相似文献   

19.
Camarodont sea urchins possess a rapidly evolving actin gene family whose members are expressed in distinct cell lineages in a developmentally regulated fashion. Evolutionary changes in the actin gene family of echinoids include alterations in number of family members, site of expression, and gene linkage, and a dichotomy between rapidly and slowly evolving isoform-specific 3' untranslated regions. We present sequence comparisons and an analysis of the actin gene family in two congeneric sea urchins that develop in radically different modes, Heliocidaris erythrogramma and H. tuberculata. The sequences of several actin genes from the related species Lytechinus variegatus are also presented. We compare the features of the Heliocidaris and Lytechinus actin genes to those of the the actin gene families of other closely related sea urchins and discuss the nature of the evolutionary changes among sea urchin actins and their relationship to developmental mode.  相似文献   

20.
We have tested the impact of tags on the structure and function of indirect flight muscle (IFM)-specific Act88F actin by transforming mutant Drosophila melanogaster, which do not express endogenous actin in their IFMs, with tagged Act88F constructs. Epitope tagging is often the method of choice to monitor the fate of a protein when a specific antibody is not available. Studies addressing the functional significance of the closely related actin isoforms rely almost exclusively on tagged exogenous actin, because only few antibodies exist that can discriminate between isoforms. Thereby it is widely presumed that the tag does not significantly interfere with protein function. However, in most studies the tagged actin is expressed in a background of endogenous actin and, as a rule, represents only a minor fraction of the total actin. The Act88F gene encodes the only Drosophila actin isoform exclusively expressed in the highly ordered IFM. Null mutations in this gene do not affect viability, but phenotypic effects in transformants can be directly attributed to the transgene. Transgenic flies that express Act88F with either a 6x histidine tag or an 11-residue peptide derived from vesicular stomatitis virus G protein at the C terminus were flightless. Overall, the ultrastructure of the IFM resembled that of the Act88F null mutant, and only low amounts of C-terminally tagged actins were found. In contrast, expression of N-terminally tagged Act88F at amounts comparable with that of wild-type flies yielded fairly normal-looking myofibrils and partially reconstituted flight ability in the transformants. Our findings suggest that the N terminus of actin is less sensitive to modifications than the C terminus, because it can be tagged and still polymerize into functional thin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号