首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure, the thermal expansion coefficient, electrical conductivities of Ce0.8Gd0.2?xMxO2?δ (for M: Bi, x = 0–0.1, and for M: Sm, La, and Nd, x = 0.02) solid solutions, prepared for the first time hydrothermally, are investigated. The uniformly small particle size (28–59 nm) of the materials allows sintering of the samples into highly dense ceramic pellets at 1300–1400 °C. The maximum conductivity, σ700 °C around 4.46 × 10?2 S cm?1 with Ea = 0.52 eV, is found at x = 0.1 for Bi-co-doping. Among various metal-co-dopings, for x = 0.02, the maximum conductivity, σ700 °C around 2.88 × 10?2 S cm?1 with Ea = 0.67 eV, is found for Sm-co-doping. The electrolytic domain boundary (EDB) of Ce0.8Gd0.1Bi0.1O2?δ is found to be 1.2 × 10?19 atm, which is relatively lower than that of the singly doped samples. The thermal expansion coefficients, determined from high-temperature X-ray data are 11.6 × 10?6 K?1 for the CeO2, 12.1 × 10?6 K?1 for Ce0.8Gd0.2O2?δ, and increase with co-doping to 14.2 × 10?6 K?1 for Ce0.8Gd0.18Bi0.02O2?δ. The maximum power densities for the single cell based on the codoped samples are higher than that of the singly doped sample. These results suggest that co-doping can further improve the electrical performance of ceria-based electrolytes.  相似文献   

2.
《Journal of power sources》2006,160(1):674-680
Composite solid polymer electrolytes (CSPEs) consisting of polyethyleneoxide (PEO), LiClO4, organic acids (malonic, maleic, and carboxylic acids), and/or Al2O3 were prepared in acetonitrile. CSPEs were characterized by Brewster Angle Microscopy (BAM), thermal analysis, ac impedance, cyclic voltammetry, and tested for charge–discharge capacity with the Li or LiNi0.5Co0.5O2 electrodes coated on stainless steel (SS). The morphologies of the CSPE films were homogeneous and porous. The differential scanning calorimetric (DSC) results suggested that performance of the CSPE film was highly enhanced by the acid and inorganic additives. The composite membrane doped with organic acids and ceramic showed good conductivity and thermal stability. The ac impedance data, processed by non-linear least square (NLLS) fitting, showed good conducting properties of the composite films. The ionic conductivity of the film consisting of (PEO)8LiClO4:citric acid (99.95:0.05, w/w%) was 3.25 × 10−4 S cm−1 and 1.81 × 10−4 S cm−1 at 30 °C. The conductivity has further improved to 3.81 × 10−4 S cm−1 at 20 °C by adding 20 w/w% Al2O3 filler to the (PEO)8LiClO4 + 0.05% carboxylic acid composite. The experimental data for the full cell showed an upper limit voltage window of 4.7 V versus Li/Li+ for CSPE at room temperature.  相似文献   

3.
《Journal of power sources》2006,159(2):1310-1315
We report the epitaxial growth of the LiNi1−yMyO2 films (M = Co, Co–Al) on heated nickel foil using pulsed laser deposition in oxygen environment from lithium-rich targets. The structure and morphology was characterized by X-ray diffractometry, electron scanning microscopy and Raman spectroscopy. Data reveal that the formation of oriented films is dependent on two important parameters: the substrate temperature and the gas pressure during ablation. The charge–discharge process conducted in Li-microcells demonstrates that effective high specific capacities can be obtained with films 1.35 μm thick. Stable capacities of 83 and 92 μAh cm−2 μm are available in the potential range 4.2–2.5 V for LiNi0.8Co0.2O2 and LiNi0.8Co0.15Al0.05O2 films, respectively. The self-diffusion coefficient of Li ions determined from galvanostatic intermittent titration experiments is found to be 4 × 10−12 cm2 s−1.  相似文献   

4.
A.A. Dakhel 《Solar Energy》2012,86(1):126-131
A comprehensive structural, optical, electrical, and optoelectronic study of arsenic-doped SnO2 was conducted. Several arsenic-doped SnO2 thin films with different arsenic content have been prepared on glass and silicon substrates by a vacuum thermal evaporation technique. The structural, electrical and optical study show that some of As5+ ions occupied locations in interstitial positions of SnO2 lattice. The prepared oxidized pure tin film is found to be consisting of orthorhombic and tetragonal SnO2 structure. The optical properties show that arsenic-doped SnO2 films are good transparent oxides. The bandgap of arsenic-doped SnO2 varies with arsenic content following the Moss–Burstein rule. The electrical behaviors show that the prepared arsenic-doped SnO2 films are degenerate semiconductors and might transform into insulators with increasing arsenic doping level. The electrical properties (resistivity, mobility, and carrier concentration) vary depending on the arsenic doping level. The SnO2 film doped with wt. 0.6% arsenic shows utmost dc electrical conductivity parameters: resistivity of 4.6 × 10?2 Ω cm, mobility of 6.0 cm2/V s, and carrier concentration of 2.25 × 1019 cm?3. From transparent-conducting-oxide (TCO) point of view, low arsenic concentration (less that 1%) is effective for SnO2 donor doping but not emulate doping with other dopant like Sb.  相似文献   

5.
《Journal of power sources》2006,159(1):237-240
LiFePO4 is one of the promising materials for cathode of secondary lithium batteries due to its high energy density, low cost, environmental friendliness and safety. However, LiFePO4 has very poor electronic conductivity (∼10−9 S cm−1) and Li-ion diffusion coefficient (∼1.8 × 10−14 cm2 s−1) at room temperature. In an attempt to improve electrochemical properties, LiXFePO4 with various amounts of Li contents were investigated in this study. LiXFePO4 (X = 0.7–1.1) samples were synthesized by solid-state reaction. High resolution X-ray diffraction, Rietveld analysis, BET, scanning electron microscopy, and hall effect measurement system were used to characterize these samples. Electronic conductivities of the samples with Li-deficient and Li-excess in LixFePO4 were 10−3 to 10−1 S cm−1. Discharge capacities and rate capabilities of the samples with Li-deficient and Li-excess in LiXFePO4 were higher than those of stoichiometric LiFePO4 sample. Li0.9FePO4 samples fired at 700 °C had discharge capacity of 156 and 140 mAh g−1 at 0.1 C- and 2 C-rate, respectively.  相似文献   

6.
The usefulness of poly(dimethyl siloxane-co-ethylene oxide) (P(DMS-co-EO)) copolymer as an ion conducting matrix was investigated. The electrochemical properties were studied by electrochemical impedance spectroscopy and cyclic voltammetry. The glass transition temperature (Tg) and degree of crystallization as a function of salt concentration were examined by differential scanning calorimetry. Ionic conductivities as high as 2.6×10−4 S cm−1 were determined at 25 °C for copolymers films with 5 wt.% LiClO4. These same films had an electrochemical stability window of 5 V. The pseudo-activation energy as a function of salt concentration was obtained using the Vogel–Tamman–Fulcher (VTF) equation.  相似文献   

7.
Iron-base alloys (Fe–Cr) are proposed hereafter as materials for interconnect of planar-type intermediate temperature solid oxide fuel cell (ITSOFC); they are an alternative solution instead of the use of ceramic interconnects. These steels form an oxide layer (chromia) which protects the interconnect from the exterior environment, but is an electrical insulator. One solution envisaged in this work is the deposition of a reactive element oxide coating, that slows down the formation of the oxide layer and that increases its electric conductivity. The oxide layer, formed at high temperature on the uncoated alloys, is mainly composed of chromia; it grows in accordance with the parabolic rate law (kp = 1.4 × 10−12 g2 cm−4 s−1). On the reactive element oxide-coated alloy, the parabolic rate constant, kp, decreases to 1.3 × 10−13 g2 cm−4 s−1. At 800 °C, the area-specific resistance of Fe–30Cr alloys is about 0.03 Ω cm2 after 24 h in laboratory air under atmospheric pressure. The Y2O3 coating reduces the electrical resistance 10-fold. This indicates that the application of Y2O3 coatings on Fe–30Cr alloy allows to use it as an interconnect for SOFC.  相似文献   

8.
Al and Y codoped ZnO (AZOY) transparent conducting oxide (TCO) thin films were first deposited on n-Si substrates by pulsed laser deposition (PLD) to form AZOY/n-Si heterojunction solar cells. However, the properties of the AZOY emitter layers are critical to the performance of AZOY/n-Si heterojunction solar cells. To estimate the properties of AZOY thin films, films deposited on glass substrates with various substrate temperatures (Ts) were analyzed. Based on the experimental results, optimal electrical properties (resistivity of 2.8 ± 0.14 × 10?4 Ω cm, carrier mobility of 27.5 ± 0.55 cm2/Vs, and carrier concentration of 8.0 ± 0.24 × 1020 cm?3) of the AZOY thin films can be achieved at a Ts of 400 °C, and a high optical transmittance of AZOY is estimated to be >80% (with glass substrate) in the visible region under the same Ts. For the AZOY/n-Si heterojunction solar cells, the AZOY thin films acted not only as an emitter layer material, but also as an anti-reflected coating thin film. Thus, a notably high short-circuit current density (Jsc) of 31.51 ± 0.186 mA/cm2 was achieved for the AZOY/n-Si heterojunction solar cells. Under an AM1.5 illumination condition, the conversion efficiency of the cells is estimated at only approximately 4% (a very low open-circuit voltage (Voc) of 0.24 ± 0.001 V and a fill factor (FF) of 0.51 ± 0.011) without any optimization of the device structure.  相似文献   

9.
《Journal of power sources》2002,109(1):214-219
Among various solid electrolytes, the lithium–phosphorus oxynitride (Lipon) electrolyte synthesized by sputtering of Li3PO4 in pure N2 has a good ionic conductivity of 2(±1)×10−6 S cm−1 at 25° C. As the nitrogen concentration increases in the Lipon electrolyte, the ionic conductivity is reported to increase as a result of a higher degree of cross-links. When Lipon films are deposited by sputtering, however, it is reported that the maximum nitrogen concentration saturates approximately at 6 at.%. By non-equilibrium processes, such as ion-implantation, nitrogen concentration can be controlled over 6 at.%. This study investigates the effect of nitrogen concentration on the ionic conductivity in Lipon films by using ion-implantation. Impedance measurements at 25° C show that the nitrogen-implanted Lipon films enhance or retard the ionic conductivity over a wide range after nitrogen-implantation, when compared with as-deposited thin-films.  相似文献   

10.
Boron-doped hydrogenated microcrystalline silicon oxide (p-μc-Si:Ox:H) films have been deposited using catalytic chemical vapor deposition (Cat-CVD). The single-coiled tungsten catalyst temperature (Tfil) was varied from 1850 to 2100 °C and films were deposited on glass substrates at the temperatures (Tsub) of 100–300 °C. Different catalyst-to-substrate distances of 3–5 cm and deposition pressures from 0.1 to 0.6 Torr were considered.Optical and electrical characterizations have been made for the deposited samples. The sample transmittance measurement shows an optical-bandgap (Egopt) variation from 1.74 to 2.10 eV as a function of the catalyst and substrate temperatures. One of the best window materials was obtained at Tsub=100 °C and Tfil=2050 °C, with Egopt=2.10 eV, dark conductivity of 3.0×10?3 S cm?1 and 0.3 nm s?1 deposition rate.  相似文献   

11.
《Journal of power sources》2006,159(1):179-185
Spinel LiMn2O4 thin-film cathodes were obtained by spin-coating the chitosan-containing precursor solution on a Pt-coated silicon substrate followed by a two-stage heat-treatment procedure. The LiMn2O4 film calcined at 700 °C for 1 h showed the highest Li-ion diffusion coefficient, 1.55 × 10−12 cm2 s−1 (PSCA measurement) among all calcined films. It is attributed to the larger interstitial space and better crystal perfection of LiMn2O4 film calcined at 700 °C for 1 h. Consequently, the 700 °C-calcined LiMn2O4 film exhibited the best rate performance in comparison with the ones calcined at other temperatures.  相似文献   

12.
《Journal of power sources》2003,114(1):113-120
Tin oxides and nickel oxide thin film anodes have been fabricated for the first time by vacuum thermal evaporation of metallic tin or nickel, and subsequent thermal oxidation in air or oxygen ambient. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements showed that the prepared films are of nanocrystalline structure with the average particle size <100 nm. The electrochemical properties of these film electrodes were examined by galvanostatic cycling measurements and cyclic voltammetry. The composition and electrochemical properties of SnOx (1<x<2) films strongly depend on the oxidation temperature. The reversible capacities of SnO and SnO2 films electrodes reached 825 and 760 mAh g−1, respectively, at the current density of 10 μA cm−2 between 0.10 and 1.30 V. The SnOx film fabricated at an oxidation temperature of 600 °C exhibited better electrochemical performance than SnO or SnO2 film electrode. Nanocrystalline NiO thin film prepared at a temperature of 600 °C can deliver a reversible capacity of 680 mAh g−1 at 10 μA cm−2 in the voltage range 0.01–3.0 V and good cyclability up to 100 cycles.  相似文献   

13.
《Journal of power sources》2006,161(2):1486-1492
Redox supercapacitors are attracting increasing attention as high power electrochemical sources and can either be coupled with batteries to provide peak power or replace batteries for memory back-up. In the present work, all-polymer solid-state supercapacitors with LiClO4 and LiCF3SO3 doped polypyrrole electrodes and P(VDF-HFP)-PMMA based polymer gel electrolyte are fabricated. The polypyrrole electrodes are irradiated with 160 MeV Ni12+ ions at 5 × 1010, 5 × 1011 and 5 × 1012 ions cm−2. A comparative study is made between unirradiated and irradiated supercapacitors with polypyrrole-based electrodes. An average capacitance of about 200 F gm−1 is obtained. On successive charging and discharging, the capacitance decreases for supercapacitors with unirradiated electrodes but remains stable when irradiated electrodes are used. In addition, the capacitance is slightly decreased compared with that for unirradiated electrodes. Charge–discharge studies show a decrease in total charge–discharge time for supercapacitors with irradiated electrodes. The capacitance values calculated from cyclic voltammograms are higher than those determined from charge–discharge plots due to the added contribution of a leakage current. The coulombic efficiency of all the supercapacitors is about 90%.  相似文献   

14.
《Journal of power sources》2006,160(1):139-147
Sulfonated poly(etheretherketone) with a cardo group (SPEEK-WC) exhibiting a wide range of degree of sulfonation (DS) was used to prepare polymeric membranes and composite membranes obtained by incorporation of an amorphous zirconium phosphate sulfophenylenphosphonate (Zr(HPO4)(O3PC6H4SO3H), hereafter Zr(SPP)) in a SPEEK-WC matrix. The nominal composition of the composite membranes was fixed at 20 wt% of Zr(SPP). Both types of membrane were characterized for their proton conductivity, methanol permeability, water and/or methanol uptake, morphology by SEM and mechanical properties. For comparison, a commercial Nafion 117 membrane was characterized under the same operative conditions. The composite membranes exhibited a reduced water uptake in comparison with the polymeric membranes especially at high DS values and temperature higher than 50 °C. As a result, the water uptake into composite membranes remained about constant in the range 20–70 °C. The methanol permeability (P) of both polymeric and composite membranes was always lower than that of a commercial Nafion 117 membrane. At 22 °C and 100% relative humidity (RH), the proton conductivities (σ) of the polymeric membranes increased from 6 × 10−4 to 1 × 10−2 S cm−1 with the increase of DS from 0.1 to 1.04. The higher conductivity value was comparable with that of Nafion 117 membrane (3 × 10−2 S cm−1) measured under the same operative conditions. The conductivities of the composite membranes are close to that of the corresponding polymeric membranes, but they are affected to a lesser extent by the polymer DS. The maximum value of the σ/P ratio (about 7 × 104 at 25 °C) was found for the composite membrane with DS = 0.2 and was 2.5 times higher than the corresponding value of the Nafion membrane.  相似文献   

15.
《Journal of power sources》2006,156(2):525-532
The Li-ion and electronic conductivities of a series of p-doped poly(thiophene)s with oligo-ethylene oxide side chains have been determined at room temperature as functions of side-chain length and concentration of LiOTf dissolved in the polymers in order to assess their utility as binders in Li-ion batteries. The lithium triflate concentration was varied from 0.23 to 2.26 mmol LiOTf/g –C2H4O– (100 O:Li to 10 O:Li), and the concentration of dissociated Li+ was determined from the IR spectra of the polymer solutions. The greatest ionic conductivity, 2 × 10−4 S cm−1, was attained with intermediate concentrations of added salt that corresponded with the greatest degree of LiOTf dissociation. Li-ion mobilities of 5 × 10−7 cm2 (Vs)−1 were measured for poly(thiophene)s (PT) with short oligo(ethylene oxide) side-chains (En), PE2T and PE3T, whereas the polymers with longer side chains, PE7T and PE15T, had Li-ion mobilities about an order of magnitude greater, 5 × 10−6 cm2 (Vs)−1. The electronic conductivity of the polymers heavily doped with NOBF4 was near 0.1 S cm−1 for PE2T and PE3T, but was orders of magnitude smaller for the polymers with longer side-chains. Addition of LiOTf caused the electronic conductivity of PE2T and PE3T to drop to that of the longer chain polymers whose conductivities were insensitive to the LiOTf concentration.  相似文献   

16.
《Journal of power sources》2002,110(1):222-228
The compatibility of a composite electrolyte composed of a yttria stabilized zirconia (YSZ) film and a yttria-doped ceria (YDC) substrate in a solid oxide fuel cell (SOFC) that can be operated under 800 °C was evaluated. The YSZ film coated on a YDC substrate was derived from a polymeric YSZ sol using a sol–gel spin coating method followed by heat-treatment at 1400 °C for 2 h. The SEM and XRD analysis indicated that there were no cracks, pinholes, or byproducts. The composite electrolyte comprising a YSZ film of 2 μm thickness and a YDC substrate of 1.6 mm thickness was used in a single cell performance test. A 0.5 V higher value of open circuit voltage (OCV) was found for the composite electrolyte single cell compared with an uncoated YDC single cell between 700 and 1050 °C and confirmed that the YSZ film was an electron blocking layer. The maximum power density of the composite electrolyte single cell at 800 °C, 122 mW/cm2 at 285 mA/cm2, is comparable with that of a YSZ single cell with the same thickness at 1000 °C, namely 144 mW/cm2 at 330 mA/cm2. The hypothetical oxygen partial pressure at the interface between the YSZ film and the YDC substrate for the composite electrolyte with the same thickness ratio at 800 °C is 5.58×10−18 atm which is two orders of magnitude higher than the equilibrium oxygen partial pressure of Ce2O3/CeO2, 2.5×10−20 atm, at the same temperature.  相似文献   

17.
《Journal of power sources》2006,155(2):368-374
The polymer electrolyte based on polyethylene oxide (PEO) complexed with conducting polyaniline (PANI) and salts of AgNO3 and NaNO3 has been prepared in different weight percentage ratios. The complexation is confirmed by infra-red and X-ray diffraction studies. Conductivity (dc) measurements are carried out using a two-probe technique in the temperature range 30–80 °C. Electrochemical cell parameters for battery application at room temperature are also been determined. The electric conductivities are 1.5 × 10−5 S cm−1 at 30 °C and 5.5 × l0−2 S cm−1 at 80 °C for a PEO:PANI (50:50) composite. The conductivity increases with increasing weight percentage of polyaniline in polyethylene oxide, which may be due to a strong hopping mechanism between the ether group of polyethylene oxide and conducting polyaniline. Samples are fabricated for battery application in configurations of Na:(PEO + PANI):(I2 + C + sample) and their experimental data are measured using the Wagner polarization technique.  相似文献   

18.
Inorganic/organic composite membranes formed by polybenzimidazole, silicotungstic acid and silica with different ratio between them have been prepared and characterized before and after treatment in phosphoric acid in order to evaluate the influence of composition and acid treatment on some main characteristics of the membranes. In particular the proton conductivity, the mechanical stability and the structural characteristics of the membranes were evaluated. Silica behaved as a support on which the heteropolyacid remained blocked in finely dispersed state and as an adsorbent for water, thus determining a beneficial effect on proton conduction. The membrane with 50 wt.% of SiWA–SiO2/PBI, mechanically stable, gave proton conductivity of 1.2×10−3 S cm−1 at 160°C and 100% relative humidity. After treatment with phosphoric acid the proton conductivity of membranes increased to 2.23×10−3 S cm−1 under the same test conditions. All the materials prepared had amorphous structure.  相似文献   

19.
A new type of oxide-salt composite electrolyte, gadolinium-doped ceria (GDC)–LiCl–SrCl2, was developed and demonstrated its promising use for intermediate temperature (400–700 °C) fuel cells (ITFCs). The dc electrical conductivity of this composite electrolyte (0.09–0.13 S cm−1 at 500–650 °C) was 3–10 times higher than that of the pure GDC electrolyte, indicating remarkable proton or oxygen ion conduction existing in the LiCl–SrCl2 chloride salts or at the interface between GDC and the chloride salts. Using this composite electrolyte, peak power densities of 260 and 510 mW cm−2, with current densities of 650 and 1250 mA cm−2 were achieved at 550 and 625 °C, respectively. This makes the new material a good candidate electrolyte for future low-cost ITFCs.  相似文献   

20.
《Journal of power sources》2006,163(1):382-385
Plasticized chitosan-proton conductor polymer electrolyte films were prepared by dissolving chitosan powder, ammonium nitrate (NH4NO3) salt and ethylene carbonate (EC) plasticizer in acetic acid solution. The highest conductivity of the chitosan-salt with 40 wt.% NH4NO3 in the film at room temperature was 8.38 ± 4.11 × 10−5 S cm−1 and this increased to 9.93 ± 1.90 × 10−3 S cm−1 with 70 wt.% EC. Batteries with a configuration of: Zn + ZnSO4·7H2O/18 wt.% CA-12 wt.% NH4NO3-70 wt.% EC/MnO2 provided an open-circuit voltage of 1.56 ± 0.06 V. The discharge characteristics using a 1 mA constant current demonstrated a capacity of 17.0 ± 2.6 mAh. The internal resistance was 29.8 ± 5.1 Ω. While the highest power density was 8.70 ± 1.91 mW cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号