首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为了解决遥感图像场景分类中因样本量小而分类精度不高的问题,提出了一种基于多尺度特征融合(MSFF)的分类方法。首先,对遥感图像进行尺度变换,得到同一遥感源图像的多个不同尺度图像。接着,将其分别输入深度卷积神经网络(DCNN)中进行卷积操作。然后,将各卷积层和全连接层提取出的不同尺度特征进行降维和编码/平均池化操作。最后,将各尺度特征进行编码融合并利用多核支持向量机(MKSVM)进行场景分类。在两个公开遥感图像数据集UCM Land-Use和NWPU-RESISC45中进行试验,分类精度最高分别达到98.91%和99.33%。本文方法能够利用不同尺度的图像特征,结合低、中、高层语义表示,使融合特征的可辨识性更高,同时使用多核支持向量机提高了深度网络学习的泛化能力,因此分类效果更好。  相似文献   

2.
针对自动引导车上的图像数字在识别时受现场环境影响大的缺陷,提出了一种基于特征融合的自动引导车图像数字识别方法,它将各工位图像数字归一化处理后,提取灰度信息、改进的穿越线特征等特征量进行特征融合计算,并输出最后结果。现场运行实验表明:在有噪声的情况下,该方法不仅能够提高图像数字的识别率,并且对由环境影响所导致的图像数字局部污染与残缺具有很好的鲁棒性。  相似文献   

3.
赵海滨  王宏  喻春阳 《仪器仪表学报》2006,27(Z3):2177-2178
图像融合的目的是把来自多传感器的数据信息合并成一幅新的图像,以改善图像的视觉效果.本文提出了一种基于区域特征和神经元网络的图像融合方法.首先把要融合的图像分成32×32的块,将图像块的区域特征作为RBF网络的输入.通过RBF网络,来融合图像.试验证明,该方法取得了较好的效果.  相似文献   

4.
多聚焦图像融合技术是为了突破传统相机景深的限制,将焦点不同的多幅图像合成一幅全聚焦图像,以获得更加全面的信息。以往基于空间域和基于变换域的方法,需要手动进行活动水平的测量和融合规则的设计,较为复杂。所提出的方法与传统的神经网络相比增加了提取浅层特征信息的部分,提高了分类准确率。将源图像输入训练好的多尺度特征网络中获得初始焦点图,然后对焦点图进行后处理,最后使用逐像素加权平均规则获得全聚焦融合图像。实验结果表明,本文方法融合而成的全聚焦图像清晰度高,保有细节丰富且失真度小,主、客观评价结果均优于其他方法。  相似文献   

5.
自然界中的物体通常采用图形和图像两种表达形式,它们在计算机中的描述则是采用两种不同的数据格式。特征建模是当前工业产品数字化建模的主要手段,但是目前的特征描术不能描述复杂的表观和非均质材质信息。提出一种图形/图像融合的特征建模思想,可以有效解决这一难题。论文详细论述了基于图形图像建模的必要和方法,并给出了几个应用实例。  相似文献   

6.
在深度学习下的图像语义分割中,为了探究高层特征对于户外场景语义分割性能的影响,在对高层特征进行分析的基础上,提出了融合高层特征的图像语义分割方法。在目前主流深度学习框架Caffe下搭建的分割模型,并采用斯坦福8类户外场景数据集对模型进行了训练和测试。测试结果验证了该方法的有效性和准确性。  相似文献   

7.
基于多特征的红外与可见光图像融合   总被引:3,自引:0,他引:3  
针对传统图像融合方法易导致融合图像整体对比度低及细节反差小的问题,提出一种多特征加权多分辨率图像融合方法。首先,对多尺度分解后的低频系数进行边缘特征、平均梯度特征的提取,同时对高频系数进行相关信号强度比特征的提取。然后,通过边缘特征级融合指导像素级图像融合得到高频系数;针对合成模块中简单加权法易引起边缘或纹理局部模糊的问题,提出分两种情况分别合成同一位置的多尺度分解系数。最后,通过平均梯度特征自适应加权得到融合图像的低频系数,并对低频和高频系数进行多尺度逆变换得到融合图像。实验表明,本文方法的融合性能优于经典的融合方法,其融合质量评价指标中的标准差、空间频率、信息熵和平均梯度分别提高了15.12%、4.30%、6.15%和3.44%。  相似文献   

8.
针对芯片图像分类过程中图像数量过少、需要大量人工标注以及效率低的问题,提出一种基于迁移学习的VGG-16网络芯片图像分类方法。该方法通过VGG-16网络直接从原始像素中自动学习图像特征,有效减少人工标注的成本,同时对比了VGG-16网络模型和基于迁移学习的VGG-16网络模型的准确率及其混淆矩阵。实验结果表明,所提出的基于迁移学习的VGG-16网络模型对芯片图像分类效果要优于原VGG-16网络模型。  相似文献   

9.
黄珍  潘颖  苑毅 《机电工程技术》2021,50(7):161-163
传统图像融合技术存在融合后图像边缘清晰度低的问题,为此,引入改进神经网络,提出一种图像融合技术的设计方法.通过分析改进神经网络的理论概述,提出基于改进神经网络构建脉冲融合数学模型的方式,对图像融合中的行为进行数学描述与约束.同时,根据每个神经元在网络中的不同状态,制定图像融合行为实施规则,对其附近区域内的神经元信息进行...  相似文献   

10.
乳腺肿瘤超声图像的特征分析   总被引:1,自引:0,他引:1  
基于乳腺肿瘤良恶性在超声图像的不同特征,利用计算机自动识别,作为医生的辅助诊断.方法的步骤为本文先在常用超声仪上获得乳腺肿瘤超声图像,接着从图像中自动提取肿瘤边缘,然后自动提取不依赖于超声仪系统的特征参数,用特征选择器选择出最优特征矢量,最后经分类器判别乳腺肿瘤的良恶性.实验基于200例病例随机划分为训练集和测试集各半进行测试,获得结果Accuracy为0.960,Sensitivity为0.982,Specificity为0.935,PPV和NPV分别为0.946和0.977,结果表明本文方法泛化能力强,可以作为识别乳腺肿瘤良恶性的一种辅助手段.  相似文献   

11.
特种视频(本文特指暴力视频)的智能分类技术有助于实现网络信息内容安全的智能监控。针对现有特种视频多模态特征融合时未考虑语义一致性等问题,本文提出了一种基于音视频多模态特征融合与多任务学习的特种视频识别方法。首先,提取特种视频的表观信息和运动信息随时空变化的视觉语义特征及音频信息语义特征;然后,构建具有语义保持的共享特征子空间,以实现音视频多种模态特征的融合;最后,提出基于音视频特征的语义一致性度量和特种视频分类的多任务学习特种视频分类理论框架,设计了对应的损失函数,实现了端到端的特种视频智能识别。实验结果表明,本文提出的算法在Violent Flow和MediaEval VSD 2015两个数据集上平均精度分别为97.97%和39.76%,优于已有研究。结果证明了该算法的有效性,有助于提升特种视频监控的智能化水平。  相似文献   

12.
汉英口语翻译自动评分不仅仅可以提高评分的效率,同时也可以确保评分的公正客观性.本文提取了汉英口语翻译自动评分的相似度特征、句法特征和语音特征,得到了用于自动评分的11个特征.以某大学英语专业口语翻译课程考试所采集的语音信号为例,最终获得了包含8个特征的汉英口语翻译自动评分模型.结果表明,在去除特征之后,汉英口语翻译自动...  相似文献   

13.
数据驱动的深度学习方法在高压断路器机械故障诊断中取得了一定的成效,然而这些方法实现优异性能的前提是可获取海量训练样本,在现场数据匮乏场景下其诊断性能明显下降。为此,提出了一种新颖的特征融合度量学习模型用于现场小样本高压断路器机械故障诊断。首先构建了特征融合卷积神经网络,有效提升了可鉴别特征提取能力。然后以K近邻算法作为度量学习器实现小样本数据的匹配和分类。最后通过改进中心损失进一步提升特征表示的分辨能力,并通过情景训练从实验室构建的大样本集中学习可迁移知识。实验结果表明,本文方法在每类支持集样本数为5时便可达到94.58%的诊断精度,相对于卷积神经网络提升了63.71%。同时,得益于情景训练方式本文方法有效避免了非平衡样本的问题。  相似文献   

14.
Because planetary gear is characterized by its small size, light weight and large transmission ratio, it is widely used in large-scale, low-speed and heavy-duty mechanical systems. Therefore, the fault diagnosis of planetary gear is a key to ensure the safe and reliable operation of such mechanical equipment. A fault diagnosis method of planetary gear based on the entropy feature fusion of ensemble empirical mode decomposition (EEMD) is proposed. The intrinsic mode functions (IMFs) with small modal aliasing are obtained by EEMD, and the original feature set is composed of various entropy features of each IMF. To address the insensitive features in the original feature set and the excessive feature dimension, kernel principal component analysis (KPCA) is used to process the original feature set. Kernel principal component extraction and feature dimension reduction are performed. The fault diagnosis of planetary gear is eventually realized by applying the extracted kernel principal components and learning vector quantization (LVQ) neural network. The experiments under different operation conditions are carried out, and the experimental results indicate that the proposed method is capable of extracting the sensitive features and recognizing the fault statuses. The overall recognition rate reaches to 96% when the motor output frequency is 45 Hz and the load is 13.5 N m, and the fault recognition rates of the normal gear, the gear with one missing tooth and the broken gear can reach to 100%. The recognition rates of different fault gears under other operation conditions also can achieve better results. Thus, the proposed method is effective for the diagnosis of planetary gear faults.  相似文献   

15.
多波段图像融合可以有效综合各个波段图像中包含的特征信息。针对可见光和红外图像,提出了一种结合红外图像视觉显著性提取的双波段图像融合方法,一方面旨在凸显红外图像的目标信息,另一方面又尽可能的保留了可见光图像的丰富细节信息。首先,在局部窗口内实现红外图像的显著性图提取,并通过窗口尺寸的变化形成多尺度的显著性图,并对这些显著性图进行最大值的优选叠加,以获取能反映整幅红外图像各个尺寸目标的显著性图;其次,通过结合显著性图与红外图实现显著性图的加权增强;最后,利用增强的红外显著性图进行双波段图像的融合。通过两组对比实验,数据表明该方法给出的融合图像视觉效果好,运算速度快,客观评价值优于对比的7种融合方法。  相似文献   

16.
多波段图像融合可以有效综合各个波段图像中包含的特征信息。针对可见光-红外图像,本文提出了一种结合红外图像视觉显著性提取的双波段图像融合方法,一方面旨在凸显红外图像的目标信息,同时又能尽可能的保留可见光图像的丰富细节信息。首先,在局部窗口内实现红外图像的显著性图提取,并通过窗口尺寸的变化形成多尺度的显著性图,并对这些显著性图进行最大值的优选叠加,以获取能反映整幅红外图像各个尺寸目标的显著性图;其次,通过结合显著性图与红外图实现显著性图的加权增强;最后,利用增强的红外显著性图进行双波段图像的融合。通过两组对比实验,数据表明该方法给出的融合图像视觉效果好,运算速度快,客观评价值优于对比的7种融合方法。  相似文献   

17.
本文提出一种利用多传感器信号深度特征融合的方法实现电机变转速工况下的故障诊断。首先从多传感器节点同步采集电机的多通道振动、声音和漏磁信号。对漏磁信号进行处理获取电机转子的累积转角曲线,随后利用累积转角曲线对振动和声音信号进行阶比分析处理。最后利用双层双向长短期记忆网络从经过预处理的多传感器信号中提取和融合特征以诊断电机故障。实验结果表明,通过提取和融合8通道的电机振动和声音信号,本文提出的方法能够有效识别电机的高阻接触、偏心、霍尔断线、相间短路、轴承等10类运行状态,分类准确率达到99.86%。该方法有望部署在物联网边缘计算节点中,实现电机的远程在线状态监测和故障诊断。  相似文献   

18.
针对激光超声检测中波场的三维数据处理计算量大且损伤特征提取难的问题,提出了一种基于深度学习模型的导波波场分析方法.首先,以VGG-Net网络为框架,建立了基于VGG11(A-LRN)的残差网络模型,用于挖掘时间-空间波场数据中的导波特征;其次,以局部波数特征为物理机理,采用导波传播的解析式生成训练样本,解决了深度学习大数据获取的问题,获得了波场特征提取的神经网络模型;最后,以激光超声系统在含损伤结构中的实验数据作为测试样本,验证了所提出的网络模型能够提取表征损伤的导波特征,实现了结构的损伤成像,其损伤成像精度均在67%以上,损伤形貌的可视化效果好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号