首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimum tilt and azimuth angles for solar panels were calculated for a grid of 0.1° by 0.1° National Solar Radiation Database (NSRDB-SUNY) cells covering the continental United States. Optimum tilt and azimuth angles varied by up to 10° from the rule of thumb of latitude tilt and due south azimuth, especially in coastal areas, Florida, Texas, New Mexico, and Colorado. The yearly global irradiation incident on a panel at this optimum orientation was compared to the solar radiation received by a flat horizontal panel and a 2-axis tracking panel. Compared to global horizontal irradiation, irradiation at optimum fixed tilt increased with increasing latitude and by 10%–25% per year. Irradiation incident on a 2-axis tracking panel in one year was 25%–45% higher than irradiation received by a panel at optimum fixed orientation. The highest increases in tracking irradiation were seen in the southwestern states, where irradiation was already large, leading to annual irradiation of over 3.4 MWh m?2.  相似文献   

2.
Daryl R. Myers 《Solar Energy》2012,86(9):2771-2782
Multiple junction and thin film photovoltaic (PV) technologies respond differently to varying terrestrial spectral distributions of solar energy. PV device and system designers are concerned with the impact of spectral variation on PV specific technologies. Spectral distribution data are generally very rare, expensive, and difficult to obtain. We modified an existing empirical spectral conversion model to convert hourly broadband global (total hemispherical) horizontal and direct normal solar radiation to representative spectral distributions. Hourly average total hemispherical and direct normal beam solar radiation, such as provided in Typical Meteorological Year (TMY) data, are spectral model input data. Default or prescribed atmospheric aerosols and water vapor are possible inputs. Individual hourly and monthly and annual average spectral distributions are computed for a specified tilted surface. The spectral range is from 300 nm to 1800 nm. The model is a modified version of the Nann and Riordan SEDES2 model. Measured hemispherical spectral distributions for a wide variety of conditions at the Solar Radiation Research Laboratory at the National Renewable Energy Laboratory, Golden, Co. and Florida Solar Energy Center (Cocoa, FL) show that reasonable spectral accuracy of about ±10% is obtainable with exceptions for weather events such as snow. Differing cloud climatology and variable albedo and aerosol optical depth atmospheric conditions can lead to spectral model differences of 30–40%.  相似文献   

3.
《Applied Thermal Engineering》2007,27(2-3):442-449
Solar energy integrated with the building is an important approach for the synchronous development of solar energy and architecture. The energy gain of the solar collector integrated with the pitched roof has been greatly influenced by the roof azimuth and tilted angle. Investment cost of the collectors is mainly decided by the size of the collector area. Accordingly, it is significant for solar building design to economically determinate the area compensation of the solar collector at different azimuth and tilted angles. Take Kunming and Beijing as examples, area compensation for the flat-plate tube-fin solar collector used in southern regions and the evacuated tube collector with cylindrical absorbers used in northern regions in China have been theoretically calculated. The results to some extent show that the daily horizontal solar radiation, ambient temperature, the azimuth and tilted angle of the collector integrated into the roof have an influence on the area compensation. The azimuth angle and tilted angle of the roof are the main factors that influence the A/A0, which is defined as the collector area ratio of the non-south-facing collectors to the south-facing ones with the optimal tilted angle. Comparative studies found that the range of A/A0 for the evacuated tube collector used in the northern regions is close to that for the flat-plate tube-fin solar collector used in the southern regions. When the pitched roof tilted angle β  [25°, 45°] and the azimuth angle ∣γ  30°, the collectors can intercept a lot of solar radiant-energy. Considering the economic situations of the ordinary consumers in China, the optimal area compensation A/A0  1.30 is recommended in this paper.  相似文献   

4.
Monthly averages of hourly irradiances upon a surface tilted toward the south in Barcelona, Spain, have been calculated from the global and diffuse average hourly solar irradiance on a horizontal surface computed over a period of three years (1973–1975). Similarly, daily irradiation on a monthly average and total annual irradiation for several inclinations were computed. Optimum slopes corresponding to a maximum incident energy were calculated from the annual average of daily solar irradiation, summer and winter, in the same way as the values of the inclination for which annual irradiation is maximum and minimum.  相似文献   

5.
Viability of solar photovoltaics as an electricity generation source for Jordan was assessed utilizing a proposed 5 MW grid-connected solar photovoltaic power plant. Long-term (1994–2003) monthly average daily global solar radiation and sunshine duration data for 24 locations – distributed all over the country – were studied and analyzed to assess the distribution of radiation and sunshine duration over Jordan, and formed an input data for evaluation and analysis of the proposed plant's electricity production and economic feasibility. It was found that – depending on the geographical location – the global solar radiation on horizontal surface varied between 1.51 and 2.46 MWh/m2/year with an overall mean value of 2.01 MWh/m2/year for Jordan. The sunshine duration was found to vary – according to the location – between 8.47 and 9.68 h/day, with a mean value of 9.07 h/day and about 3311 sunshine hours annually for Jordan. The annual electricity production of the proposed plant varied depending on the location between 6.886 and 11.919 GWh/year, with a mean value of 9.46 GWh/year. The specific yield varied between 340.9 and 196.9 kWh/m2, while the mean value was 270.59 kWh/m2. Analysis of the annual electricity production of the plant, the specific yield, besides the economic indicators i.e., internal rate of return, simple payback period, years– to- positive cash flow, net present value, annual life cycle saving, benefit–cost ratio, and cost of energy – for all sites – showed that Tafila and Karak are the most suitable sites for the solar photovoltaic power plant's development and Wadi Yabis is the worst. The results also showed that an average of 7414.9 tons of greenhouse gases can be avoided annually utilizing the proposed plant for electricity generation at any part of Jordan.  相似文献   

6.
《Energy》2005,30(7):933-951
We present the energy use situation in Hong Kong from 1979 to 2001. The primary energy requirement (PER) nearly tripled during the 23-year period, rising from 195,405 TJ to 572,684 TJ. Most of the PER was used for electricity generation, and the electricity use in residential buildings rose from 7556 TJ (2099 GWh) to 32,799 TJ (9111 GWh), an increase of 334%. Air-conditioning accounted for about 40% of the total residential sector electricity consumption. A total of 144 buildings completed in the month of June during 1992–2001 were surveyed. Energy performance of the building envelopes was investigated in terms of the overall thermal transfer value (OTTV). To develop the appropriated parameters used in OTTV calculation, long-term measured weather data such as ambient temperature (1960–2001), horizontal global solar radiation (1992–2001) and global solar radiation on vertical surfaces (1996–2001) were examined. The OTTV found varied from 27 to 44 W/m2 with a mean value of 37.7  W/m2. Building energy simulation technique using DOE-2.1E was employed to determine the cooling requirements and hence electricity use for building envelope designs with different OTTVs. It was found that cooling loads and electricity use could be expressed in terms of a simple two-parameter linear regression equation involving OTTV.  相似文献   

7.
In recent years, renewable energy utilisation in various applications has increased significantly. Applications involving solar thermal energy include air and water heating whilst solar photovoltaic systems have been installed to provide electricity for households in urban and rural areas of the developing economies. The solar radiation data are not easily available for many countries and is therefore estimated most of the times. In this work is presented the results of evaluating the Sayighr “Universal formula” for estimating the global solar radiation in the Niger Delta region of Nigeria with Umudike (longitude 7.33°E, latitude 5.29°N) as a case study. The levels of the global solar radiation which ranged from 1.99 kWh to 6.75 kWh, computed with the method are in agreement with those of earlier authors indicating that the method can be used for reproducing signatures of global solar radiation in the region when actual measurements are not available.  相似文献   

8.
The insensitivity to energy quality is one of the disadvantages of an energy analysis when compared to an exergy analysis. It is only the exergy analysis that clearly reveals the degradation of energy quality in the processes of absorption and emission of solar radiation. The national spatial distribution of mean monthly exergy values of solar radiation over Turkey was mapped at 500-m resolution using universal kriging based on solar radiation data from 152 geo-referenced locations. Mean exergy value of solar radiation in Turkey was estimated at 13.5 ± 1.74MJm?2day?1, with a mean annual exergy-to-energy ratio of 0.93.  相似文献   

9.
Solar photovoltaic (PV) hybrid system technology is a hot topic for R&D since it promises lot of challenges and opportunities for developed and developing countries. The Kingdom of Saudi Arabia (KSA) being endowed with fairly high degree of solar radiation is a potential candidate for deployment of PV systems for power generation. Literature indicates that commercial/residential buildings in KSA consume an estimated 10–45% of the total electric energy generated. In the present study, solar radiation data of Dhahran (East-Coast, KSA) have been analyzed to assess the techno-economic viability of utilizing hybrid PV–diesel–battery power systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kW h). The monthly average daily solar global radiation ranges from 3.61 to 7.96 kW h/m2. NREL's HOMER software has been used to carry out the techno-economic viability. The simulation results indicate that for a hybrid system comprising of 80 kWp PV system together with 175 kW diesel system and a battery storage of 3 h of autonomy (equivalent to 3 h of average load), the PV penetration is 26%. The cost of generating energy (COE, US$/kW h) from the above hybrid system has been found to be 0.149 $/kW h (assuming diesel fuel price of 0.1 $/L). The study exhibits that for a given hybrid configuration, the operational hours of diesel generators decrease with increase in PV capacity. The investigation also examines the effect of PV/battery penetration on COE, operational hours of diesel gensets for a given hybrid system. Emphasis has also been placed on unmet load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (for different scenarios such as PV–diesel without storage, PV–diesel with storage, as compared to diesel-only situation), cost of PV–diesel–battery systems, COE of different hybrid systems, etc.  相似文献   

10.
The near-exponential rise in tourist numbers and accelerating economic growth have challenged Tibetan energy supply and threaten its peculiar environment and valuable ecosystem. Exploitation of pollution free solar power may medicate this demand for energy. Here we shall provide a review of solar power development in Tibet. This region has a near inexhaustible source of solar energy due to its average annual radiation intensity of 6000–8000 MJ/m2, ranking it first in China and second after the Sahara worldwide. Currently, Tibet has 400 photovoltaic power stations with a total capacity of nearly 9 MW. In addition, 260,000 solar energy stoves, passive solar house heating covering 3 million square meters, and 400,000 m2 of passive solar water heaters are currently in use in Tibet. Although Tibet places first in applying solar energy in China, solar energy faces big challenges from hydroelectric power and the absence of local know-how. The new power generation capacity in Tibet's “11th Five-Year (2006–2010)” Plan focuses primarily on hydropower, PV power stations being relegated to a secondary role as supplementary to hydropower. Here it will be argued that this emphasis is incorrect and that solar energy should take first place in Tibet's energy development, as it is crucial in striving for a balance between economic development, booming tourism, and environmental protection.  相似文献   

11.
《Energy》2006,31(14):2728-2738
We report the first observations of solar global UV (280–380 nm) radiation on the island of Cyprus obtained during an ongoing joint research project between the University of Athens and the Meteorological Service of Cyprus. Hourly global UV (Guv) and global (Gh) solar irradiances are measured and the relationship between the two radiant fluxes is investigated at Athalassa, Cyprus (35°15′N, 33°40′E, 165 m above MSL). These data are used to determine the temporal variability of the percentage ratio of solar global UV to solar global irradiation (Guv/Gh) and its dependence on various atmospheric conditions. Analyzing the data set, an inverse correlation between ozone column amount and the precise UV/Global ratio was found, which can be rather attributed to the change of various atmospheric parameters than the ozone column. The analysis of hourly percentage ratio values reveals a definite daily pattern with lower values during sunrise/sunset and higher values around noon. The variation of the percentage ratios (Guv/Gh) ranges from 3.95±0.29% in September to 2.92±0.42% in August for hourly values, while for daily values, the variation is between 2.85±0.32% in August and 3.68±0.1% in September, with annual mean values of 3.33±0.21% for hourly and 3.19±0.17% for daily data. Finally, the present data reveals a seasonal contribution of the aerosol extinction on the precise (Guv/Gh) ratio values.  相似文献   

12.
This paper describes the performance of a circular glass tube solar collector with a set of closed-loop oscillating heat-pipes with check valves (CLOHP/CV). The assembly was divided into three sections, i.e. circular glass tube, adiabatic gap and condenser water tank. A circular 10-set glass tube solar collector of 0.058 m diameter and 1.50 m length was housed on a collecting plate. The inside circular glass tube consisted of a CLOHP/CV and collecting plate. The adiabatic gap was 0.05 m. The condenser water tank was made from a 0.03 × 0.05 m2 zinc sheet. The CLOHP/CV consisted of the collecting plate cover with inner diameter of 0.003 m and 26.40 m total length per set, and it contained two check valves with evaporator 1.50 m long, adiabatic gap 0.05 m and condenser 0.30 m long. R-134a was used as the working fluid with filling ratio of 50%. The CLOHP/CV arrangement was aligned at an inclination angle of 18 degrees from the horizontal plane, with 6 turns per set. A 0.001 m thick aluminum sheet was used to make a collecting plate with 0.10 × 1.50 m2 test area. Efficiency evaluations were conducted during daylight hours over a 2-month period and included extensive monitoring and recording of temperatures with type-K thermocouples placed at key locations throughout the system. The results confirmed the anticipated fluctuation in collector efficiency dependent on the time of day, solar energy irradiation, ambient temperature and circular tube surface mean temperature. An efficiency of approximately 76% was achieved, which correlates with the efficiency of the more expensive heat-pipe system. The CLOHP/CV system offers the additional benefits of corrosion-free operation and absence of freezing during winter months.  相似文献   

13.
The burning of depleting fossil fuels for power generation has detrimental impact on human life and climate. In view of this, renewable solar energy sources are being increasingly exploited to meet the energy needs. Moreover, solar photovoltaic (PV)–diesel hybrid system technology promises lot of opportunities in remote areas which are far from utility grid and are driven by diesel generators. Integration of PV systems with the diesel plants is being disseminated worldwide to reduce diesel fuel consumption and to minimize atmospheric pollution. The Kingdom of Saudi Arabia (K.S.A.) being endowed with high intensity of solar radiation, is a prospective candidate for deployment of PV systems. Also, K.S.A. has large number of remote scattered villages. The aim of this study is to analyze solar radiation data of Rafha, K.S.A., to assess the techno-economic feasibility of hybrid PV–diesel–battery power systems to meet the load requirements of a typical remote village Rawdhat Bin Habbas (RBH) with annual electrical energy demand of 15,943 MWh. Rafha is located near RBH. The monthly average daily global solar radiation ranges from 3.04 to 7.3 kWh/m2. NREL's HOMER software has been used to perform the techno-economic evaluation. The simulation results indicate that for a hybrid system composed of 2.5 MWp capacity PV system together with 4.5 MW diesel system (three 1.5 MW units) and a battery storage of 1 h of autonomy (equivalent to 1 h of average load), the PV penetration is 27%. The cost of generating energy (COE, US$/kWh) from the above hybrid system has been found to be 0.170$/kWh (assuming diesel fuel price of 0.1$/l). The study exhibits that the operational hours of diesel generators decrease with increase in PV capacity. The investigation also examines the effect of PV/battery penetration on COE, operational hours of diesel gensets. Concurrently, emphasis has been placed on: un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (for different scenarios such as: PV–diesel without storage, PV–diesel with storage, as compared to diesel-only situation), COE of different hybrid systems, etc. The decrease in carbon emissions by using the above hybrid system is about 24% as compared to the diesel-only scenario.  相似文献   

14.
真空管内吸热体接收太阳辐照量的研究   总被引:4,自引:1,他引:3  
该文对真空管内吸热体分别为平板,圆柱体南向斜置,圆柱体东西横置3种形式在晴天时的日接受太阳辐照量进行了分析研究,推导出了它们与纬度、放置倾角和时间的函数关系,并对北京地区采用的3种安装角度对上述3种形式的集热管的日接收太阳辐照量进行了计算和比较。结果表明,不同纬度地区东西横置圆柱吸热体的日接收太阳辐照量是相同的,有一定倾角的朝南放置圆柱吸热体年平均日接收太阳辐照量高于其东西横置,并且还高于同一倾角的平板吸热体。  相似文献   

15.
E.M. Nfah  J.M. Ngundam 《Solar Energy》2012,86(10):2935-2949
Photovoltaic hybrid systems (PVHS) with 2 days of energy autonomy are shown to be optimal options for the supply of the daily energy demands of 33 base transceiver stations of MTN Cameroon. PVHS were computed for all sites using the technical data for a 150 Wp mono-crystalline module, the site specific hourly load data, the average monthly solar radiation and temperature. Hourly solar radiation data for all sites were downloaded using the solar resource module of HOMER and geographical coordinates of the selected sites. The 3-hourly temperature data available on a website maintained NASA was used to generate average monthly hourly temperatures needed in the calculation of the output of solar modules. The energy costs and breakeven grid distances for possible power options were computed using the Net Present Value Technique and financial data for selected power system components. The results with a PV module cost of 7.5 €/Wp, a remote diesel price of 1.12 €/l, a general inflation rate of 5% and a fuel escalation of 10% showed that the annual operational times of the diesel generator were in the range 3–356 h/year with renewable energy fractions in the range 0.89–1.00. However, only 22 PVHS had two parallel battery strings as stipulated in the request for proposal launched by MTN Cameroon in 2008. The PV array sizes evaluated for the 22 PVHS were found to be the range 2.4–10.8 kWp corresponding to daily energy demands in the range 7.31–31.79 kW h/d. The energy costs and breakeven grid distances determined were in the ranges 0.81–1.32 €/kW h and 10.75–32.00 km respectively.  相似文献   

16.
H.D. Behr 《Solar Energy》1997,61(6):399-413
Three transfer-models in use for estimating solar radiation on tilted surfaces are tested. A 12 year series of hourly global, diffuse, and reflected solar irradiation measured with horizontal pyranometers as well as hourly global solar irradiation measured with tilted south oriented pyranometers is available. One model uses daily irradiation, the other two use hourly irradiation. The models converting hourly solar irradiation on a horizontal surface to a tilted surface yield better results than that using daily irradiation. The best results are gained if pairs of hourly global and diffuse solar irradiation are available. The root mean square errors exceed 10% only if the sky is covered by more than 85% with clouds or if the solar elevation angle is less than 10°.  相似文献   

17.
To characterize the solar radiation in the Benelux countries, a dataset of daily global horizontal solar radiation resulting from both on-site observations time series and long-term satellite-derived data has been generated and analysed at the Royal Meteorological Institute of Belgium (RMI). The developed procedures take advantage of a recently released 23 years long (1983–2005) surface incoming solar radiation (SIS) climate data records derived from the first generation of Meteosat satellites imageries and the radiometric measurements networks operated by the Koninklijk Nederlands Meteorologisch Instituut (KNMI) and RMI, respectively. In addition to the computation of various statistics to quantify the amount and the variability of the solar resources in the Benelux, solar radiation climate zones within the Benelux were defined and the recent trend in solar radiation was characterized.  相似文献   

18.
Longan is one of the most widely cropped fruits in Northern Thailand, where a significant amount of the annual harvest is commercially dried and exported as a commodity. Liquefied petroleum gas is generally used as the energy source for heating the drying air, but concern is growing as fuel prices are expected to increase for the foreseeable future. Meanwhile, with the ample solar radiation in Thailand, the roofs of drying facilities could be adapted to serve as solar collectors to preheat the drying air, thus reducing the energy requirement from fossil fuels. In this study, a simulation program for a flat-plate solar air heater was used to estimate the potential to preheat drying air given the conditions of several longan drying facilities. Results showed that solar collectors can replace up to 19.6% of the thermal energy demand during the drying season. Bigger collectors and smaller air channels result in more useful heat, but attention has to be paid to costs and pressure drop, respectively. Annual monetary savings can reach up to THB 56,000 (≈US$ 1800 at US$ 1 = THB 31).  相似文献   

19.
A silicone gel lamination technology of PV panels has been developed and gel lamination apparatus with an annual production capacity of 1 MWp has been designed and manufactured. Silicone gel laminated c-Si PV panels were prepared and tested at 3.5 times concentrated solar radiation in the UV chamber. Negligible corrosion of silicone gel laminated PV panels was observed in comparison with EVA laminated panels. In contrast to EVA-laminated panels the transparency reduction induced by UV radiation in silicone gel lamination is very small. Production of silicone gel laminated PV panels with 50 years lifetime could be achievable because of the strongly reduced corrosiveness which is main source of failures in commercial PV panels.Photodegradation of some components of PV systems was observed in the past, for example (Reda, 2007, Daliento and Lancellotti, 2010).  相似文献   

20.
An energy resource that is renewed by nature and whose supply is not affected by the rate of consumption is often termed as renewable energy. The need to search for renewable, alternate and non-polluting sources of energy assumes top priority for self-reliance in the regional energy supply. This demands an estimation of available energy resources spatially to evolve better management strategies for ensuring sustainability of resources. The spatial mapping of availability and demand of energy resources would help in the integrated regional energy planning through an appropriate energy supply–demand matching. This paper discusses the application of Geographical Information System (GIS) to map the renewable energy potential talukwise in Karnataka State, India. Taluk is an administrative division in the federal set-up in India to implement developmental programmes like dissemination of biogas, improved stoves, etc. Hence, this paper focuses talukwise mapping of renewable energy (solar, wind, bioenergy and small hydroenergy) potential for Karnataka using GIS. GIS helps in spatial and temporal analyses of the resources and demand and also aids as Decision Support System while implementing location-specific renewable energy technologies.Regions suitable for tapping solar energy are mapped based on global solar radiation data, which provides a picture of the potential. Coastal taluks in Uttara Kannada have higher global solar radiation during summer (6.31 kWh/m2), monsoon (4.16 kWh/m2) and winter (5.48 kWh/m2). Mapping of regions suitable for tapping wind energy has been done based on wind velocity data, and it shows that Chikkodi taluk, Belgaum district, has higher potential during summer (6.06 m/s), monsoon (8.27 m/s) and winter (5.19 m/s). Mysore district has the maximum number of small hydropower plants with a capacity of 36 MW. Talukwise computation of bioenergy availability from agricultural residue, forest, horticulture, plantation and livestock indicates that Channagiri taluk in Shimoga district yields maximum bioenergy. The bioenergy status analysis shows that Siddapur taluk in Uttara Kannada district has the highest bioenergy status of 2.004 (ratio of bioresource availability and demand).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号