首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
平面手征超介质不对称传输特性研究进展   总被引:1,自引:1,他引:0  
平面手征超介质由于具有不对称传输的奇特性质而引起了人们极大的兴趣.简要介绍了平面手征超介质产生不对称传输的原理,并着重阐述了电磁波分别在微波段、光波段以及太赫兹波段的不对称传输性质与相应手征结构的模拟计算以及实验研究进展.这种不对称传输的超介质在微波、光子学器件中具有潜在的应用价值.  相似文献   

2.
人工电磁超材料具有自然界材料所不具备的电磁参数,并且拥有可设计性和可灵活调节的性质,可实现对电磁波传播性能进行新的调控,是近年来国际物理学、材料学和信息科学领域的研究热点。首先介绍了人工电磁超材料的概念内涵和近年来的发展概况,简要分析了国外人工电磁超材料研究的发展水平,以及美欧军事强国对超材料研究的重视和支持情况。重点介绍了南京大学开展的一些人工电磁超材料在微波吸波材料结构中的应用探索,包括超材料微波吸波结构的设计和分析、基于人工手征超材料结构的吸波结构设计、吸波频带可调节及可切换的微波吸波结构设计等。这些材料和结构运用人工超材料的特殊物理特性和参数的可设计性,与传统微波吸波材料相比,具有可调节的优势,有效提高了对电磁波的调控能力。  相似文献   

3.
电磁超材料因具有特殊的物理性质以及在电磁波操控方面的重要应用而备受关注。本文综述了太赫兹超材料及其成像应用的研究进展:首先介绍了太赫兹超材料的研究概况,重点讨论了可调谐与可重构太赫兹超材料、太赫兹数字编码与现场可编程超材料的研究进展;在此基础上,阐述了太赫兹超材料在成像领域的应用,包括基于超表面透镜、超材料吸波器、可重构超表面和现场可编程超表面的太赫兹成像技术;最后讨论了太赫兹超材料及其成像应用发展趋势。功能可重构及智能化将是太赫兹超材料的重要发展方向,而新兴的信息超材料融合了超材料与信息技术也将使太赫兹成像更加高效便捷。  相似文献   

4.
本文提出了一种基于相变材料Ge2Sb2Te5 (GST)的圆二色性可调谐外在手征超表面,该超表面由两层对称的银(Ag)方形开口谐振环和GST中间层单元周期排列而成。结合斜入射光线,该超表面能实现与手征结构相同的电磁特性。数值模拟结果表明:该超表面在50 THz~300 THz的频率范围内,GST为非晶态时,圆二色性(CD)值最大为0.85;GST为晶态时,CD值最大为0.52。当GST在两种相态(非晶态-晶态)之间切换时,实现了70 THz左右的频率调谐。通过研究电场分布,解释了圆二色性产生的原因;还研究了入射角和结构参数对该超表面圆二色性的影响。这项研究在光频段高效偏振调制器件、圆偏振器和偏振滤光器等方面有潜在的应用价值。  相似文献   

5.
外在手征超材料作为一种结构简单,易于制造,并可以通过调整入射波的角度来动态调控电磁特性的新型超材料越来越受到人们的关注。简要介绍了外在手征超材料的背景和概念,并着重阐述了其在微波段、太赫兹波段以及光频段的数值模拟与实验研究进展。这种结构在各类光电子学器件、生物医学等领域有着现实的应用价值。  相似文献   

6.
朱邱豪  王金金  董建峰 《材料导报》2021,35(7):7063-7070
自超表面(超薄亚波长厚度超材料)被提出之后,其基础材料经历了从金属、混合介质再到全介质材料的更迭.传统超表面功能单一,在实际应用中存在局限性,因此,研究者们把目标放在了动态可调谐的超表面上.本文介绍了具有高效光传输特性的混合介质和全介质的可调谐超表面的一些理论基础,并对近期的研究进展进行了综述,全介质型可调谐超表面又分为材料调谐和物理调谐两部分.在红外和太赫兹波段,主要介绍了锗-锑-碲化合物(Ge2 Sb2 Te5,GST)、VO2、石墨烯、液晶、砷化镓等一些常用材料的可调谐超表面的研究进展,最后,给出了对可调谐超表面未来发展的一些个人看法.  相似文献   

7.
近年来,超材料因具有操纵电磁波的强大能力而受到越来越多的关注。然而,大多数先前报道的超材料无法动态调控超宽波段电磁波。本文提出了一种使用具有不同相变温度的石蜡基复合材料(PD-Cs)来实现热可调谐宽带吸收的超材料结构体(T-TBM)。通过在不同相变温度下控制PDCs的固液态,实现了从低频到高频的T-TBM反射损耗峰值的动态调控。T-TBM可以改变吸收峰值带宽(反射损耗值小于-30 d B),并且通过调整T-TBM的温度依然满足宽带吸收(反射损耗小于-10d B)。实验结果表明,T-TBM中PD-Cs的相变恒温效应为在不同热条件下主动控制电磁波吸收响应提供了时间窗口。该器件在电磁吸收、智能超材料、多功能结构器件等领域具有广阔的应用前景。  相似文献   

8.
螺旋炭纤维作为手征性材料的典型代表,具有成分、结构、形貌、电磁和手征参数可调的显著优势,成为近年来研究的热点.综述了螺旋炭纤维的制备及其结构与形貌控制、生长机理和吸波性能,发现对其结构和形貌的控制,可以调节和改善其吸波性能.同时讨论了螺旋炭纤维的发展趋势和存在的主要问题.  相似文献   

9.
超材料为具有超常电磁性质的人工结构,因拥有自然界材料没有的介电常数、磁导率和折射率等电磁性质而引起人们的关注。双曲超材料是具有强各向异性介电张量或磁导率张量的介质,其介电常数张量或磁导率张量的分量在一个或两个空间方向上为负,与其他类型的超材料相比,双曲超材料具有在光学频率下相对容易制造、宽带非共振和三维体响应以及灵活的波长可调谐性等优点。本文综述了双曲超材料的特性、实现方法、可调谐及活性以及其作为超灵敏传感器的发展,重点讨论了基于金属/介质多层结构及金属纳米线阵列的双曲超材料作为生物传感器的原理及研究进展,并指出双曲超材料传感器发展的长期目标是结构简单、便于制备、宽频带和多元分析。  相似文献   

10.
动态调控是现代光学器件中必不可少的特性,在激光雷达系统、显示器件以及数码相机等设备中具有重要意义.与传统的体光学器件相比,动态超表面为实现小型化和集成化智能光学系统提供了一个极具吸引力的解决方案.相变材料具有高的折射率对比度和易于操控的特性,是设计动态超表面的理想材料.本文通过操控氧化钒的相变,在近红外区域设计实现了可调谐的超构透镜和可切换图像编码的超表面器件.通过控制氧化钒的相变,能够改变超透镜的聚焦强度,实现强度对比约为12倍的开关聚焦效果.此外,利用氧化钒的相变还设计实现了任意两个不同数字图案的可切换成像.本工作为实现动态成像和光学加密系统的可调谐超表面奠定了基础.  相似文献   

11.
2D metasurfaces have emerged as a paradigm-shifting platform for light management with considerable miniaturization and alleviated fabrication challenges than their 3D counterparts. However, the appearance of in-plane mirror symmetry and reduced dimensions impose fundamental restraints to advanced chiroptical responses and reconfiguration capabilities. Here, a new concept of Fano-enhanced circular dichroism by introducing a reconfigurable stereo metasurface, which possesses deformable out-of-plane twists that are readily achieved by a simple nano-kirigami fabrication method, is demonstrated. The stereo height and twisting geometries can be reproducibly controlled, providing a facile and automated fashion to tailor the distinct profiles of Fano resonances under circularly polarized incidence. As a result, a recorded high efficiency of circular dichroism generation per unit sample thickness is achieved with Fano resonances in opposite lineshapes. Leveraging this feature, large-range reconfiguration of circular dichroism at optical wavelengths is demonstrated through reversible compression of the stereo metasurfaces with a fiber tip. The studied stereo metasurface unfolds a new degree of freedom for advanced photonic applications in a quasi-flat optical platform, and the proposed concept of Fano-enhanced circular dichroism opens new venues to explore interesting fundamental phenomena of chiral optics.  相似文献   

12.
The metasurface concept is employed to planarize retroflectors by stacking two metasurfaces with separation that is two orders larger than the wavelength. Here, a retroreflective metasurface using subwavelength‐thick reconfigurable C‐shaped resonators (RCRs) is reported, which reduces the overall thickness from the previous record of 590 λ0 down to only 0.2 λ0. The geometry of RCRs could be in situ controlled to realize equal amplitude and phase modulation onto transverse magnetic (TM)‐polarized and transverse electric (TE)‐polarized incidences. With the phase gradient being engineered, an in‐plane momentum could be imparted to the incident wave, guaranteeing the spin state of the retro‐reflected wave identical to that of the incident light. Such spin‐locked metasurface is natively adaptive toward different incident angles to realize retroreflection by mechanically altering the geometry of RCRs. As a proof of concept, an ultrathin retroreflective metasurface is validated at 15 GHz, under various illumination angles at 10°, 12°, 15°, and 20°. Such adaptive spin‐locked metasurface could find promising applications in spin‐based optical devices, communication systems, remote sensing, RCS enhancement, and so on.  相似文献   

13.
Abstract

The propagation of strongly polarized electromagnetic waves through a resonance medium, with arbitrary angular momenta of the levels, is investigated in the adiabatic-following approximation. Exact wavefunctions of the two-level atomic system with degenerate levels in the field of a circularly (linearly) polarized wave are constructed and the picture of the shift of energy level splittings is discussed. Exact formulae for the nonlinear refractive index of the medium in the field of the circularly (linearly) polarized wave are found. The propagation of counterpropagating polarized waves—an intense pump wave and a probe light signal—through the resonance medium is studied. The studies are carried out in the scope of a two-level (one-photon resonance) and a three-level (one- and two-photon resonances) medium. Formulae are found for the induced rotation of the plane of polarization for the probing signal that are exact in terms of the intensity of the pump wave. The spectral dependence of the angle of rotation is studied, and it is shown that a series of Stark-shifted resonance poles of atomic absorption and a three-photon scattering process arise.  相似文献   

14.
Controlling the phase of local radiation by using exotic metasurfaces has enabled promising applications in a diversified set of electromagnetic wave manipulation such as anomalous wavefront deflection, flat lenses, and holograms. Here, we theoretically and experimentally demonstrate an active phase transition in a micro‐electromechanical system‐based metadevice where both the phase response and the dispersion of the metamaterial cavity are dynamically tailored. The phase transition is determined by the radiative and the absorptive losses in a metal–insulator–metal cavity that obeys the coupled‐mode theory. The complete understanding of the phase diagram in a reconfigurable configuration would open up avenues for designing multifunctional metadevices that can be actively switched between different phases leading to a plethora of applications in polarization control, beam deflectors, and holographic metamaterials.  相似文献   

15.
Next-generation devices for low-latency and seamless communication are envisioned to revolutionize information processing, which would directly impact human lives, technologies, and societies. The ever-increasing demand for wireless data traffic can be fulfilled by the terahertz band, which has received tremendous attention as the final frontier of the radio spectrum. However, attenuation due to atmospheric humidity and free-space path loss significantly limits terahertz signal propagation. High-gain antennas with directional radiation and reconfigurable beam steering are indispensable for loss compensation and terahertz signal processing, which are associated with spatial and temporal dimensions, respectively. Here, experimental demonstration of a spatiotemporal dielectric metasurface for unidirectional propagation and ultrafast spatial beam steering of terahertz waves is shown. The spatial dimension of the metasurface provides a solution to eliminate backscattering of collimated unidirectional propagation of the terahertz wave with steerable directionality. Temporal modulation of the spatial optical properties enables ultrafast reconfigurable beam steering. Silicon-based spatiotemporal devices amalgamate the rich physics of metasurfaces and technologies that are promising for overcoming the bottlenecks of future terahertz communication, such as high-speed and secure wireless data transmission, beamforming and ultrafast data processing.  相似文献   

16.
Metasurfaces enable a new paradigm to control electromagnetic waves by manipulating subwavelength artificial structures within just a fraction of wavelength. Despite the rapid growth, simultaneously achieving low‐dimensionality, high transmission efficiency, real‐time continuous reconfigurability, and a wide variety of reprogrammable functions is still very challenging, forcing researchers to realize just one or few of the aforementioned features in one design. This study reports a subwavelength reconfigurable Huygens' metasurface realized by loading it with controllable active elements. The proposed design provides a unified solution to the aforementioned challenges of real‐time local reconfigurability of efficient Huygens' metasurfaces. As one exemplary demonstration, a reconfigurable metalens at the microwave frequencies is experimentally realized, which, to the best of the knowledge, demonstrates for the first time that multiple and complex focal spots can be controlled simultaneously at distinct spatial positions and reprogrammable in any desired fashion, with fast response time and high efficiency. The presented active Huygens' metalens may offer unprecedented potentials for real‐time, fast, and sophisticated electromagnetic wave manipulation such as dynamic holography, focusing, beam shaping/steering, imaging, and active emission control.  相似文献   

17.
The abrupt phase change of light at metasurfaces provides high flexibility in wave manipulation without the need for accumulation of propagating phase through dispersive materials. In the linear optical regime, one important application field of metasurfaces is imaging by planar metalenses, which enables device miniaturization and aberration correction compared to conventional optical microlens systems. With the incorporation of nonlinear responses into passive metasurfaces, optical functionalities of metalenses are anticipated to be further enriched, leading to completely new application areas. Here, imaging with nonlinear metalenses that combine the function of an ultrathin planar lens with simultaneous frequency conversion is demonstrated. With such nonlinear metalenses, imaging of objects with near infrared light while the image appears in the second harmonic signal of visible frequency range is experimentally demonstrated. Furthermore, the functionality of these nonlinear metalenses can be modified by switching the handedness of the circularly polarized fundamental wave, leading to either real or virtual nonlinear image formation. Nonlinear metalenses not only enable infrared light imaging through a visible detector but also have the ability to modulate nonlinear optical responses through an ultrathin metasurface device while the fundamental wave remains unaffected, which offers the capability of nonlinear information processing with novel optoelectronic devices.  相似文献   

18.
Photonic metasurfaces, a kind of 2D structured medium, represent a novel platform to manipulate the propagation of light at subwavelength scale. In linear optical regime, many interesting topics such as planar meta‐lenses, metasurface optical holography, and so on have been widely investigated. Recently, metasurfaces have gone into the nonlinear optical regime. While it is recognized that the local symmetry of the meta‐atoms plays a vital role in determining the polarization, phase, and intensity of the nonlinear waves, much less attention has been paid to the global symmetry of the nonlinear metasurfaces. According to the Penrose tiling and the newly proposed hexagonal quasicrystalline tiling, nonlinear optical quasicrystal metasurfaces are designed and fabricated based on the geometric‐phase‐controlled plasmonic meta‐atoms with local rotational symmetry. It is found that the far‐field radiation behavior of second harmonic generation waves are determined by both the tiling schemes of quasicrystal metasurfaces and the local symmetry of meta‐atoms they consist of. The proposed concept may open new avenues for designing nonlinear optical sources with metasurface crystals.  相似文献   

19.
Simultaneous broadband and high efficiency merits of designer metasurfaces are currently attracting widespread attention in the field of nanophotonics. However, contemporary metasurfaces rarely achieve both advantages simultaneously. For the category of transmissive metadevices, plasmonic or conventional dielectric metasurfaces are viable for either broadband operation with relatively low efficiency or high efficiency at only a selection of wavelengths. To overcome this limitation, dielectric nanoarcs are proposed as a means to accomplish two advantages. Continuous nanoarcs support different electromagnetic resonant modes at localized areas for generating phase retardation. Meanwhile, the geometric nature of nanoarc curvature endows the nanoarcs with full phase coverage of 0–2π due to the Pancharatnam–Berry phase principle. Experimentally incorporated with the chiral‐detour phase principle, a few compelling functionalities are demonstrated, such as chiral beamsplitting, broadband holography, and helicity‐selective holography. The continuous nanoarc metasurfaces prevail over plasmonic or dielectric discretized building block strategies and the findings lead to novel designs of spin‐controllable metadevices.  相似文献   

20.
Tunable metasurfaces can be employed to physically or mechanically engineer and control electromagnetic wave properties like reflection and transmission and their associated spectral characteristics like resonance frequency. Here, we propose highly tunable and sensitive metasurfaces composed of an array of a nested double U-shaped (NDU) nanoresonators on elastic polydimethylsiloxane substrate, operating in infrared region. The mechanical deformation varies the spaces between the coupled resonator elements which in turn leads to corresponding variations in the equivalent capacitance and inductance between the U-shaped elements causing efficient tunability. In addition to the higher signal strengths, it is also reported that the resonant frequency of the proposed metasurface exhibits substantial spectral shift. The observed remarkable trends are adequately verified by the developed equivalent circuit model for the proposed NDU-structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号