共查询到20条相似文献,搜索用时 10 毫秒
1.
Process heat produced by solar collectors can contribute significantly in the conservation of conventional energy resources, reducing CO2 emission, and delaying global warming. One of the major problems associated with solar process heat application is fluctuation in system temperature during unsteady state radiation conditions which may cause significant thermal and operation problems. In this paper a transient simulation model is developed for analysing the performance of industrial water heating systems using parabolic trough solar collectors. The results showed that to prevent dramatic change and instability in process heat during transient radiation periods thermal storage tank size should not be lower than 14.5 l m?2 of collector area. Small periods of radiation instability lower than 30 min do not have significant effect on system operation. During these periods when water flow rate of collector loop is doubled the time required to restore system normal operating condition increased by a ratio of 1.5. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
2.
3.
In this paper, a more detailed three-dimensional computational model of the whole parabolic trough solar collector (PTC) system and corresponding numerical simulations by combining the Finite Volume Method (FVM) and the Monte Carlo Ray-Trace (MCRT) method were presented. Corresponding codes and solving methods were also developed and applied to simulate and analyze the total involuted photo-thermal conversion process of an experimental LS2 PTC system. The numerical results were compared with experimental data and good agreement was obtained, proving that the model and method used in the present study is feasible and reliable. More details of the characteristics of solar concentrating, solar collecting, fluid dynamics, coupled heat transfer and the whole flow and temperature fields in the receiver were also revealed and discussed. Then some typical heat transfer fluid (HTF) types and residual gas conditions were further studied. It was revealed that the properties of these HTFs/conditions and their varying relations of the fluid temperature affected the characteristics of fluid dynamics, coupled heat transfer and the whole temperature distributions in the receiver, thus affected the thermal loss and the collector efficiency synthetically. 相似文献
4.
5.
This study describes and evaluates a new simulation component for parabolic trough collectors (PTCs). The new simulation component is implemented in the TRNSYS software environment by means of new Type that is suitable for integration into the calculation of a whole concentrating solar thermal plant, in order to evaluate the energy production of a PTC. The main advantage of the new Type is that is derived from experimental data available on efficiency Test Reports, according to the current European and International standards, rather than the theoretical approach considered in the existing parabolic trough component of TRNSYS library. The performance of the new Type has been validated with real experimental data obtained from the DISS solar test loop in Plataforma Solar de Almería, Spain. The paper describes the modelling approach, presents the comparison of simulation results with measurements taken at the DISS facility and evaluates the results. 相似文献
6.
A. El Fadar A. Mimet A. Azzabakh M. Pérez-García J. Castaing 《Applied Thermal Engineering》2009,29(5-6):1267-1270
This paper presents the study of solar adsorption cooling machine, where the reactor is heated by a parabolic trough collector (PTC) and is coupled with a heat pipe (HP). This reactor contains a porous medium constituted of activated carbon, reacting by adsorption with ammonia.We have developed a model, based on the equilibrium equations of the refrigerant, adsorption isotherms, heat and mass transfer within the adsorbent bed and energy balance in the hybrid system components. From real climatic data, the model computes the performances of the machine. In comparison with other systems powered by flat plate or evacuated tube collectors, the predicted results, have illustrated the ability of the proposed system to achieve a high performance due to high efficiency of PTC, and high flux density of heat pipe. 相似文献
7.
O. García-Valladares N. Velázquez 《International Journal of Heat and Mass Transfer》2009,52(3-4):597-609
Detailed numerical simulations of thermal and fluid-dynamic behavior of a single-pass and double-pass solar parabolic trough collector are carried out. The governing equations inside the receiver tube, together with the energy equation in the tube walls and cover wall and the thermal analysis in the solar concentrator were solved iteratively in a segregated manner. The single-pass solar device numerical model has been carefully validated with experimental data obtained by Sandia National Laboratories. The effects of recycle at the ends on the heat transfer are studied numerically shown that the double-pass can enhance the thermal efficiency compared with the single-pass. 相似文献
8.
9.
A coupled simulation method based on Monte Carlo Ray Trace (MCRT) and Finite Volume Method (FVM) is established to solve the complex coupled heat transfer problem of radiation, heat conduction and convection in parabolic trough solar collector system. A coupled grid checking method is established to guarantee the consistency between the two methods and the validations to the coupled simulation model were performed. Firstly, the heat flux distribution on the collector tube surface was investigated to validate the MCRT method. The heat flux distribution curve could be divided into 4 parts: shadow effect area, heat flux increasing area, heat flux reducing area and direct radiation area. The heat flux distribution on the outer surface of absorber tube was heterogeneous in circle direction but uniform in axial direction. Then, the heat transfer and fluid flow performance in the LS-2 Solar Collector tube was investigated to validate the coupled simulation model. The outlet temperatures of the absorber tube predicted by the coupled simulation model were compared with the experimental data. The absolute errors are in the range of 1.5–3.7 °C, and the average relative error is less than 2%, which demonstrates the reliability of the coupled method established in this paper. At last, the concentrating characteristics of the parabolic trough collectors (PTCs) were analyzed by the coupled method, the effects of different geometric concentration ratios (GCs) and different rim angles were examined. The results show the two variables affect the heat flux distribution. With GC increasing, the heat flux distributions become gentler, the angle span of reducing area become larger and the shadow effect of absorber tube become weaker. And with the rim angle rising, the maximum value of heat flux become lower, and the curve moves towards the direction φ = 90°. But the temperature rising only augments with GC increasing and the effect of rim angle on heat transfer process could be neglected, when it is larger than 15°. If the rim angle is small, such as θrim = 15°, lots of rays are reflected by glass cover, and the temperature rising is much lower. 相似文献
10.
Based on the major Department of Energy Solar Industrial Process Heat Program, it has been determined that the existing techniques for predicting the performance of parabolic trough solar collectors greatly overpredict the thermal output of these systems. The objective of the research reported herein is to improve the predictive capability of existing models by incorporating a factor that accounts for dust and dirt accumulation on the optical surfaces. This has been accomplished by modifying the optical efficiency with a dust factor to account for the reduced reflectivity of the mirror and reduced transmissivity of the cover glass. This technique has been developed independent of the test data used for verification. The dust factors have been developed from exposure tests conducted at six different sites, so that it is also independent of location and collector type. Wash frequency and optical degradation rate are input to the model to compute the time varying dust factors. Recommendations for these parameters are provided based on long-term observations. The complete model is then used to provide realistic predictions of real-world performance of solar IPH systems. 相似文献
11.
ABSTRACTIn this paper, theoretical analysis of receiver tube misalignment, the design of secondary reflector and experimental analysis of a small-sized solar parabolic trough collector (PTC) with and without secondary reflectors are represented. Experimental analysis of PTC has been done using a parabolic secondary reflector (PSR) and triangular secondary reflector (TSR) and compared with PTC without secondary reflector (WSR). The maximum outlet temperature of heat transfer fluid is observed as 49.2°C, 47.3°C and 44.2°C in the case of PSR, TSR and WSR conditions, respectively. The maximum thermal efficiency of 24.3%, 22.5% and 17.8% is observed in the case of PSR, TSR and WSR conditions, respectively. The circumferential temperature difference on the outer surface of the receiver tube is obtained more uniform in the case of PSR and TSR than WSR condition. This indicates that the use of a secondary reflector can improve the performance of a solar PTC system. 相似文献
12.
Parabolic trough solar collector (PTSC) is one of the most proven technologies for large‐scale solar thermal power generation. Currently, the cost of power generation from PTSC is expensive as compared with conventional power generation. The capital/power generation cost can be reduced by increasing aperture sizes of the collector. However, increase in aperture of the collector leads to higher heat flux on the absorber surface and results in higher thermal gradient. Hence, the analysis of heat distribution from the absorber to heat transfer fluid (HTF) and within the absorber is essential to identify the possibilities of failure of the receiver. In this article, extensive heat transfer analysis (HTA) of the receiver is performed for various aperture diameter of a PTSC using commercially available computational fluid dynamics (CFD) software ANSYS Fluent 19.0. The numerical simulations of the receiver are performed to analyze the temperature distribution around the circumference of the absorber tube as well as along the length of tube, the rate of heat transfer from the absorber tube to the HTF, and heat losses from the receiver for various geometric and operating conditions such as collector aperture diameter, mass flow rate, heat loss coefficient (HLC), HTF, and its inlet temperature. It is observed that temperature gradient around the circumference of the absorber and heat losses from the receiver increases with collector aperture. The temperature gradient around the circumference of the absorber tube wall at 2 m length from the inlet are observed as 11, 37, 48, 74, and 129 K, respectively, for 2.5‐, 5‐, 5.77‐, 7.5‐, and 10‐m aperture diameter of PTSC at mass flow rate of 1.25 kg/s and inlet temperature of 300 K for therminol oil as HTF. To minimize the thermal gradient around the absorber circumference, HTFs with better heat transfer characteristics are explored such as molten salt, liquid sodium, and NaK78. Liquid sodium offers a significant reduction in temperature gradient as compared of other HTFs for all the aperture sizes of the collector. It is found that the temperature gradient around the circumference of the absorber tube wall at a length of 2 m is reduced to 4, 8, 10, 13, and 18 K, respectively, for the above‐mentioned mass flow rate with liquid sodium as HTF. The analyses are also performed for different HTF inlet temperature in order to study the behavior of the receiver. Based on the HTA, it is desired to have larger aperture parabolic trough collector to generate higher temperature from the solar field and reduce the capital cost. To achieve higher temperature and better performance of the receiver, HTF with good thermophysical properties may be preferable to minimize the heat losses and thermal gradient around the circumference of the absorber tube. 相似文献
13.
An adsorption icemaker with energy storage system is proposed for the utilization of medium temperature solar energy. In this system, the solar energy collected by parabolic trough collector (PTC) was used to provide the heat source for the adsorption icemaker. The performance of the icemaker is tested and the experimental results showed that the highest COP reached 0.15 while the COPsr could be 0.08 and the ice making capacity was 50 kg per day with 20 m2 PTC and 30 kg compound adsorbent (calcium chloride + activated carbon) when the desorption temperature, condensing temperature and the direct normal solar radiation were 105 °C, 30 °C and 3 kWh/day·m2, respectively. 相似文献
14.
A parabolic trough collector (PTC) system used for steam generation is presented in this paper. PTCs are the preferred type of collectors used for steam generation due to their ability to work at high temperatures with a good efficiency. The modelling program developed called PTCDES is used to predict the quantity of steam produced by the system. The flash vessel size, capacity and inventory determines how much energy is used at the beginning of the day for raising the temperature of the circulating water to saturation temperature before effective steam production begins. Optimisation of the flash vessel presented here uses a simplified version of the program PTCDES. System performance tests indicate that the modelling program is accurate to within 1.2% which is considered very adequate. Finally, the theoretical system energy analysis is presented in the form of a Sankey diagram. The analysis shows that only 48.9% of the available solar radiation is used for steam generation. The rest is lost either as collector or thermal losses. 相似文献
15.
16.
The parabolic trough collector is an important component of parabolic trough solar thermal power generation systems. Coordinate transformations and the Monte Carlo Ray Trace (MCRT) method were combined to simulate the circumferential flux distribution on absorber tubes. The simulation model includes the optics cone with non-parallel rays, geometric concentration ratios (GCs), the glass tube transmissivity, the absorber tube absorptance and the collector surface reflectivity. The mode is used to analyze the effects of absorber tube installation errors and reflector tracking errors. The results are compared with reference data to verify the model accuracy. Influences of installation and tracking errors on the flux distribution are analyzed for different errors, incident angles and GCs. For a GC of 20 and 90° rim angle, X direction installation errors are −0.2%∼0.2%, Y direction installation errors are −1.0%–0.5%, and the tracking error should be less than 4 mrad. As the incident angle increases, the errors become larger, but the errors become smaller as concentration ratios are increased. The results provide foundations for heat transfer analysis of the absorber tube, for parabolic trough plant to ensure the safe intensity, and for economic analysis of the installation process and control system. 相似文献
17.
《可再生能源》2017,(8)
为提高北方寒冷地区太阳能建筑采暖系统的适用性,研制了一套聚光比为3.9的非跟踪式复合多曲面聚光器(CPC)。该聚光器具有运行稳定、无运动部件及易于制造等特点。基于Light Tools光学软件,分析不同入射偏角和接收体偏差角度条件下的聚光特性,并对安装于呼和浩特市(北纬40°50')的太阳能建筑采暖系统在晴天和多云气象条件下不同安装倾角聚光器的光热性能进行对比研究。结果表明:当入射偏角为10°时,聚光器的光线汇聚率为55.2%,当板式接收体偏差角度为12°时,聚光器的汇聚率仍为93.4%;晴天运行时,安装倾角为45°的聚光器出口导热油温度比正入射时低3℃左右,多云条件下,接收体内导热油温度变化曲线平缓,说明聚光器对跟踪精度要求低,适合于应用到建筑采暖系统中。 相似文献
18.
The focus of the current study is the wind loads on a 11.92 m section of parabolic trough collector with an aperture of 5.76 m, located in Beijing, PR China. This paper presents selected results of full-scale field measurements of wind loads and wind pressure on the solar collector. The field data such as wind speed, wind direction and wind pressures are simultaneously measured from the solar collector. The measured data are analyzed to obtain the information on boundary layer wind characteristics, wind pressures and wind loads on the solar collector. The results presented in this paper are expected to be of considerable interest and of use to researchers and engineers involved in analysis and design of parabolic trough solar collectors. 相似文献
19.
This article suggests a numerical study of a continuous adsorption refrigeration system consisting of two adsorbent beds and powered by parabolic trough solar collector (PTC). Activated carbon as adsorbent and ammonia as refrigerant are selected. A predictive model accounting for heat balance in the solar collector components and instantaneous heat and mass transfer in adsorbent bed is presented. The validity of the theoretical model has been tested by comparison with experimental data of the temperature evolution within the adsorber during isosteric heating phase. A good agreement is obtained. The system performance is assessed in terms of specific cooling power (SCP), refrigeration cycle COP (COPcycle) and solar coefficient of performance (COPs), which were evaluated by a cycle simulation computer program. The temperature, pressure and adsorbed mass profiles in the two adsorbers have been shown. The influences of some important operating and design parameters on the system performance have been analyzed.The study has put in evidence the ability of such a system to achieve a promising performance and to overcome the intermittence of the adsorption refrigeration systems driven by solar energy. Under the climatic conditions of daily solar radiation being about 14 MJ per 0.8 m2 (17.5 MJ/m2) and operating conditions of evaporating temperature, Tev = 0 °C, condensing temperature, Tcon = 30 °C and heat source temperature of 100 °C, the results indicate that the system could achieve a SCP of the order of 104 W/kg, a refrigeration cycle COP of 0.43, and it could produce a daily useful cooling of 2515 kJ per 0.8 m2 of collector area, while its gross solar COP could reach 0.18. 相似文献
20.
槽式太阳聚光器的研究 总被引:1,自引:0,他引:1
提出了一种低倍聚光的抛物面槽式聚光光伏发电方式.从聚光器的聚光比入手,推导抛物面槽式聚光的能流聚光比的公式,分析了能流聚光比和各个参数的关系.依据这些关系式制成的低倍聚光装置适宜于普及,可节约光伏装置成本,增加光伏发电量. 相似文献