首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrode materials with high energy and power density are mostly essential to overcome traditional fossil fuel use. Herein, we demonstrate the synthesis of Au decorated self-assembled SnO2 nanoflowers consisting of nanorods by a cost-effective and eco-friendly solvothermal process. The as-synthesized SnO2 based materials were employed as electrode material in the energy storage system, which delivered considerably high specific capacitance of 634.3 F/g at a current density of 1 A/g. The electrode material also exhibits excellent cycle stability of 83.52% after 4000 galvanostatic charge–discharge (GCD) cycles. The high specific capacitive value is attributed to the hybrid performance of battery and supercapacitor, more active sites, and higher surface area. A solid state asymmetry device was fabricated using Au–SnO2 and activated carbon (AC) as positive and negative electrodes. The asymmetry device shows an excellent energy density of 168.9 Wh/kg at a power density of 1 kW/kg with an applied current density of 1 A/g.  相似文献   

2.
An unusual double-layered TiO2 (bottom layer)/Bx–TiO2 (top layer) combined electrode array was investigated to improve the photocurrent in dye-sensitized solar cells (DSSCs). A positive semiconductor, Bx–TiO2, with nanometer-sized B (1.0, 5.0, and 10.0 mol%)-incorporated TiO2 prepared using a solvothermal method, was utilized as the working electrode material by coating onto the second level above the TiO2 electrode. The photocurrent and photovoltaic efficiency of the TiO2 (bottom)/Bx–TiO2 (top)-DSSC were 20.5% and 17.3% greater, respectively, than that of the double-layers of anatase TiO2–DSSC in the photocurrent–voltage (IV) curve of the optimal electrode. This result was attributed to their energy levels of reduction (LUMO)/oxidation (HOMO) as determined by cyclic voltammetry (CV). As the LUMO level of Bx–TiO2 was located at a slightly higher level than that of pure anatase TiO2, the electrons donated from the dye were easily transferred to the surface of the TiO2 electrode without electron loss. Moreover, the recombination was also much slower in the TiO2 (bottom)/Bx–TiO2 (top)-based DSSCs than in the double-layered pure TiO2 DSSC.  相似文献   

3.
Three π-A-porphyrins containing long alkoxyl chains attached to the ortho position of phenyl ring and a phenyl carboxylate acid or acrylic acid at the meso position of porphyrin were synthesized. All compounds were characterized by 1H NMR and mass spectrometry. Optical and electrochemical properties were also obtained. The photovoltaic properties of these π-A-porphyrins were examined for the first time and sensitizers N-1 and N-3 achieved comparable light to electricity conversion efficiencies: 3.94% for N-1 and 4.14% for N-3. However, preparation of N-1 required simple and cost-effective synthesis which made it a promising candidate for the future practical DSSC applications. The low efficiency conversion of N-2 was well explained by the amount of dye loading, IPCE and EIS.  相似文献   

4.
The sol–gel TiO2/purified natural clay electrodes having Ti:Si molar ratios of 95:5 and 90:10 were initially prepared, sensitized with natural red cabbage dye, and compared to the sol–gel TiO2 electrode in terms of physicochemical characteristics and solar cell efficiency. The results showed that the increase in purified Na-bentonite content greatly increased the specific surface area and total pore volume of the prepared sol–gel TiO2/purified Na-bentonite composites because the clay platelets prevented TiO2 particle agglomeration. The sol–gel TiO2/5 mol% Si purified Na-bentonite and sol–gel TiO2/10 mol% Si purified Na-bentonite composites could increase the film thickness of solar cells without cracking when they were coated as a scattering layer on the TiO2 semiconductor-based film, leading to increasing the efficiency of the natural dye-sensitized solar cells in this work.  相似文献   

5.
6.
Highly dispersed Pd nanoparticles with varying loadings (15–40 wt%) and (20 − x)%Pd–x%Sn (where x = 1, 2, 3 and 5) nanocomposites are obtained on graphene nanosheets (GNS) by a microwave-assisted ethylene glycol (EG) reduction method for methanol electrooxidation in alkaline solution. The electrocatalysts were characterized by XRD, SEM, TEM, cyclic voltammetry, and chronoamperometry. The study shows that the Pd nanoparticles on GNS are crystalline and follow the face centered cubic structure. Introduction of a small amount of Sn (1–5 wt%) shifts the characteristic diffraction peaks for Pd slightly to a lower angle. The electrocatalytic performance of the Pd/GNS electrodes has been observed to be the best with 20 wt% Pd loading; a higher or lower loading than 20 wt% Pd produces an electrode with relatively low catalytic activity. The apparent catalytic activity of this active electrode at E = −0.10 V is found to improve further by 79% and CO poisoning tolerance by 40% with introduction of 2 wt% Sn. Among the electrodes investigated, the 18%Pd–2%Sn/GNS exhibited the greatest electrocatalytic activity toward methanol electrooxidation.  相似文献   

7.
We present here a combined study on the photoelectrochemical activity of highly active Nitrogen doped titanium dioxide thin-film using experiments and First principle density (DFT) based calculation. Hybridization of N 2p with O 2p and localized valence band upshifting leads to the reduction in band-gap of N–TiO2. To validate theoretical findings, the role of nitrogen in TiO2 is revisited with a focus on partial crystallinity. The best-case photoelectrode, nanostructured partially crystalline nitrogen-doped titanium dioxide (PCNDTO) offered photocurrent density of 24.3 mA/cm2 at 1 V versus saturated calomel electrode (SCE). The absence of well-defined peaks and long-range order in XRD pattern and Raman spectrum respectively suggests partially crystallinity. High-resolution transmission electron microscopy (HR-TEM) images confirm the presence of TiO2 crystals in the amorphous matrix. High photoelectrochemical response can be attributed to the abundance of hydroxyl groups, high electrochemical active surface area, reduced charge transfer resistance, and reduced charge carrier recombination rate.  相似文献   

8.
The mesoporous Au–TiO2 nanocomposites with different Au concentrations were prepared via a co-polymer assisted sol–gel method. The structures have been characterized by powder X-Ray diffraction, N2 adsorption–desorption isotherms, diffuse reflectance UV–Vis spectroscopy, X-ray photoemission spectroscopy, transmission electron microscopy. Most generated Au nanoparticles were embedded in the mesoporous TiO2 matrix. The prepared Au–TiO2 nanocomposites exhibit remarkable visible-light activity for H2 evolution from photocatalytic water reduction in the presence of ascorbic acid as the electron donor. By comparing with Pt–TiO2 samples, we found that the visible-light activity of the Au–TiO2 nanocomposites could be partially contributed by the defects/impurity states in the TiO2 matrix, while the gold surface plasmons could significantly enhance the weak visible-light excitation of TiO2 matrix. In addition, further studies by controlling irradiation wavelengths suggest that some plasmon-excited electrons could transfer from Au nanoparticles to the contacting TiO2 to reduce water for H2 generation. We believe that these Au–TiO2 nanocomposites as well as the mechanistic studies would have considerable impact on future development of metal-semiconductor hybrid photocatalysts for efficient solar hydrogen production.  相似文献   

9.
10.
Photocatalytic hydrogen production under the visible spectrum of solar light is an important topic of research. To achieve the targeted visible light hydrogen production and improve the charge carrier utilization, bandgap engineering and surface modification of the photocatalyst plays a vital role. Present work reports the one-pot synthesis of Cu–TiO2/CuO nanocomposite photocatalyst using green surfactant -aided -ultrasonication method. The materials characterization data reveals the TiO2 particle size of 20–25 nm and the existence of copper in the lattice as well as in the surface of anatase TiO2. This is expected to facilitate better optical and surface properties. The optimized photocatalyst shows enhanced H2 production rate of 10,453 μmol h−1 g−1 of the catalyst which is 21 fold higher than pure TiO2 nanoparticles. The photocatalyst was tested for degradation of methylene blue dye (90% in 4 h) in aqueous solution and photocatalytic reduction of toxic Cr6+ ions (55% in 4 h) in aqueous solution. A plausible mechanistic pathway is also proposed.  相似文献   

11.
12.
Cu doped MoS2 (Cu–MoS2)/reduced graphene oxide (rGO) (Cu–MoS2/rGO) hybrid material is fabricated by a facile one-step solvothermal method. The X-ray diffraction (XRD) results suggest that the doping of Cu does not alter the crystal structure of MoS2. X-ray photoelectron spectroscopy (XPS) analysis reveal that the doping of Cu atoms influences the electronic structure of MoS2, which is favorable to increase active sites of edges. Electrochemical impedance spectroscopy (EIS) results indicate that Cu–MoS2/rGO performed a faster charge-transfer in comparison to MoS2/rGO hybrid. In addition, the resultant Cu–MoS2/rGO catalyst with Cu/Mo mole ratio of 9% exhibits a lower overpotential of 199 mV at 10 mA cm−2, small Tafel slop of 44 mV dec−1 and cycling stability, indicative of enhanced electrocatalytic activity towards HER. The improved performance is attributed to the increased active sites and a synergistic effect between copper and molybdenum, leading to electronic structure change and charge redistribution of MoS2.  相似文献   

13.
In the present work, sol–gel method is used to synthesize TiO2 nanoparticle. The characterization of the prepared TiO2 powder is done using Powder X-ray diffraction (powder XRD), Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS) and Ultraviolet-Visible Spectrophotometry (UV-Vis). The XRD pattern reveals formation of anatase phase TiO2. The SEM images reveal agglomeration of nanoparticles. The absorbance spectrum of TiO2 nanoparticles was observed with excitonic peaks at 327 nm and the band gap came out to be ~3.2 eV. This prepared TiO2 was tested for photovoltaic performance by using it in the Dye sensitized solar cell (FTO/TiO2/N719/KI-I2/Pt). Conversion of solar light energy to electricity was successfully done using this TiO2. The fabricated cell showed an open-circuit voltage (V OC) of 587 mV and short-circuit current density (J SC) of 5.06 mA/cm2. Maximum power (P max) generated was 1.912 mW/cm2 with a fill factor (FF) of 0.644 and a conversion efficiency of 1.91%.  相似文献   

14.
Dual co-catalysts have an essential effect on improving the photoelectrochemical (PEC) performance of semiconductor materials. In this study, Ni–Ni(OH)2 or/and Nikel phosphate (NiPi) nanocrystals co-catalysts were deposited on the surface of as-prepared TiO2 nanotube arrays (TNTAs) by a simple electrodeposition route for PEC hydrogen production. The TNTAs loading with Ni and NiPi bifunctional co-catalysts exhibited remarkably enhanced PEC performance, with about an 8.3-fold increase in the photocurrent; and an 11.7-fold improvement in H2 evolution rate in comparison to bare TNTAs. The constructed ternary TNTAs/Ni–Ni(OH)2/NiPi comprised the advantage of Ni–Ni(OH)2 and NiPi nanoparticles to enhance visible-light absorption and promote oxygen evolution reaction (OER) kinetics. The internal electric field is generated between supported p-type Ni(OH)2 and n-type TiO2 under light irradiation, which will drive holes to flow to Ni(OH)2 and oxidize it as the OER active layer. Also, the photo-generated holes remaining in the TiO2 valence band can migrate to NiPi co-catalysts to cause OER. Therefore, the photogenerated electron-hole pairs can be successfully separated under the synergetic influence of Ni–Ni(OH)2 and NiPi co-catalyst, leading to a superior PEC water splitting ability.  相似文献   

15.
A rapid and simple route to synthesize highly conductive graphene-based nanosheets for use as a flexible counter electrode in dye-sensitized solar cells is presented. The flexible counter electrode is free of transparent conductive oxide layer, i.e., TCO-free. A clean graphene with high quality is obtained by the chemical reduction of graphene oxide (GO) using titanium metallic powders in a hydrochloric acid solution. The Ti+3 ions that dissociated from metallic Ti particles in a hydrochloric acid solution result in a clean graphene material with no formation of TiO2 nanoparticles, which are always present on graphene when only Ti+3 ions are used for the reduction, i.e., an anatase TiO2 nanoparticle by-product will be always left on the graphene product when not using metallic Ti particles. The chemical reaction mechanisms for these differences are revealed in this report. The reduced materials are characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, thermo-gravimetric analysis, Fourier transform infrared spectrometry, UV–vis spectroscopy and X-ray photoelectron spectroscopy. The four-point probe method is also employed to characterize the surface conductivity of the graphene films. This high quality graphene film exhibits comparable or better performance than those obtained using conventional sputtered Pt counter electrode when used as a flexible counter electrode of dye-sensitized solar cells.  相似文献   

16.
Doping Mg(NH2)2–2LiH by Mg2(BH4)2(NH2)2 compound exhibits enhanced hydrogen de/re-hydrogenation performance. The peak width in temperature-programmed desorption (TPD) profile for the Mg(NH2)2–2LiH–0.1Mg2(BH4)2(NH2)2 was remarkably shrunk by 60 °C from that of pristine Mg(NH2)2–2LiH, and the peak temperature was lowered by 12 °C from the latter. Its isothermal dehydrogenation rate was greatly improved by five times from the latter at 200 °C. XRD, FTIR and NMR analyses revealed that a series of reactions occurred in the dehydrogenation of the composite. The prior interaction between LiH and Mg–B–N–H yielded intermediate LiBH4, which subsequently reacted with Mg(NH2)2 and LiH in molar ratio of 1:6:9 to form Li2Mg2(NH)3 and Li4BN3H10 phases. The observed 6Mg(NH2)2–9LiH–LiBH4 combination dominated the hydrogen release and soak in the composite system, and enhanced the kinetics of the system.  相似文献   

17.
Layered molybdenum disulfide (MoS2)–graphene composite is synthesized by a modified l-cysteine-assisted solution-phase method. The structural characterization of the composites by energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, XPS, Raman, and transmission electron microscope indicates that layered MoS2–graphene coalescing into three-dimensional sphere-like architecture. The electrochemical performances of the composites are evaluated by cyclic voltammogram, galvanostatic charge–discharge and electrochemical impedance spectroscopy. Electrochemical measurements reveal that the maximum specific capacitance of the MoS2–graphene electrodes reaches up to 243 F g−1 at a discharge current density 1 A g−1. The energy density is 73.5 Wh kg−1 at a power density of 19.8 kW kg−1. The MoS2–graphene composites electrode shows good long-term cyclic stability (only 7.7% decrease in specific capacitance after 1000 cycles at a current density of 1 A g−1). The enhancement in specific capacitance and cycling stability is believed to be due to the 3D MoS2–graphene interconnected conductive network which promotes not only efficient charge transport and facilitates the electrolyte diffusion, but also prevents effectively the volume expansion/contraction and aggregation of electroactive materials during charge–discharge process. Taken together, this work indicates MoS2–graphene composites are promising electrode material for high-performance supercapacitors.  相似文献   

18.
A method for the preparation of TiO2 thick films made of anatase nanocrystallites and featuring a mesoporous structure is described. Modification of a typical sol–gel synthesis that uses Titanium (IV) isopropoxide (TTIP) as precursor, through both the incorporation of a non-ionic surfactant (Tween 20) and the optimization of thermal treatments, allows to increase the thickness of each spin-coated layer, and to obtain by successive runs porous, transparent, homogeneous and crackless films with thickness up to 1.2 μm. The effect of the changing the Tween 20/TTIP ratio (R, ranging from 0.25 to 1.00) on the crystallographic, morphological and optical properties has been studied by X-ray Diffraction, N2 adsorption, UV–Visible Spectroscopy and Field Emission Scanning Electron Microscopy, in both powder and film form. The size of particles decreases slightly with increasing R, while the specific surface area increases somewhat. For all the R values, including R = 0, nanoparticles behave as direct semiconductors, in contrast with bulk anatase: changes in the band gap extent caused by the porous structure are negligible. Photo-electrochemical performance and carrier dynamics were studied using the films as anodes for the water photo-electrolysis reaction by means of Linear Sweep Voltammetry, Amperometry and Electrochemical Impedance Spectroscopy. Increasing R values improves the photo-catalytic performance of the TiO2 films and leads to a comprehensive faster charge transfer at the oxide–solution interface, so that those with R = 1 offer highest performance, due to the combination of both higher thickness and improved quality of the material.  相似文献   

19.
The photocatalytic evolution of H2 over La2O3 decorated TiO2 catalyst was examined under solar light. It was observed that during the course of the reaction, the transformation of La2O3/TiO2 into La2O3–TiO2–La2O2CO3 occurred and these species effectively suppressed electron-hole pair recombination by forming electron trapping centres on the surface, resulting in an increased visible light absorption and improved H2 yield. The 2 wt%La2O3/TiO2 nanocomposite demonstrated better H2 yield (~8.76 mmol (gcat)?1) than the bare TiO2 (~1.1 mmol (gcat)?1). The catalyst was stable even after several consecutive recycles with no substantial loss of hydrogen production rate. The H2 rates were correlated with the physicochemical characteristics of the catalysts examined by BET–SA, H2-TPR, XRD, UV-DRS, Raman spectroscopy, FTIR, HRTEM, EPR and PL spectroscopy.  相似文献   

20.
In this work, B–N co-doped TiO2 has been synthesized by a facile fast sol-gel method, and then, a controlled magnesiothermic reduction has been developed to synthesize B–N co-doped black TiO2 under a N2 atmosphere and at 580 °C followed by acid treatment. The prepared black TiO2 samples were characterized by X-ray diffraction, high resolution transmission electron microscopy, Raman spectrameter, photoluminescence emission spectra, X-ray photoelectron spectroscopy, and ultraviolet–visible diffuse reflectance spectra. It shows that the prepared samples possess a unique crystalline core-amorphous shell structure composed of disordered surface and oxygen vacancies, and exhibit enhanced photocatalytic activity in hydrogen production in the methanol-water system in the presence of Pt as a co-catalyst. Under the full solar wavelength range of light, the maximum hydrogen production rate of the B–N co-doped black TiO2 is 18.8 mmol h−1 g−1, which is almost 4 times higher than that of pure TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号