首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于压电元件的悬臂梁半主动振动控制研究   总被引:1,自引:1,他引:0  
为了探讨非线性同步开关阻尼技术(synchronized switch damping,简称SSD)的半主动振动控制系统中开关切换效率对控制效果的影响,详细推导了基于开关切换效率的SSDI(synchronized switch damping on inductor)及SSDV(synchronized switch damping on voltage)的振动阻尼表达式,并搭建了悬臂复合梁振动半主动试验平台,对理论分析结果进行了试验验证.试验结果表明,开关切换的延时越小,控制效果越佳.  相似文献   

2.
Structural vibration control was an active research area for the past twenty years because of their potential applications in aerospace structures,civil structures,naval structures,etc.Semi-active vibration control methods based on piezoelectric actuators and synchronized switch damping on inductance(SSDI) techniques attract the attention of many researchers recently due to their advantages over passive and active methods.In the SSDI method,a switch shunt circuit is connected to the piezoelectric patch to shift the phase and amplify the magnitude of the voltage on the piezoelectric patch.The most important issue in SSDI method is to control the switching actions synchronously with the maximum vibration displacement or maximum strain.Hence,usually a displacement sensor is used to measure the vibration displacement or a collocated piezoelectric sensor is needed to measure the strain of the structure near the piezoelectric actuator.A self-sensing SSDI approach is proposed and applied to the vibration control of a composite beam,which avoids using a separate sensor.In the self-sensing technique,the same piezoelectric element functions as both a sensor and an actuator so that the total number of required piezoelectric elements can be reduced.One problem in the self-sensing actuator,which is the same as that in the traditional collocated piezoelectric sensors,is the noise generated in the sensor signal by the impact of voltage inversion,which may cause extra switching actions and deteriorate control performance.In order to prevent the shunt circuit from over-frequent on-and-off actions,a simple switch control algorithm is proposed.The results of control experiments show that the self-sensing SSDI approach combined with the improved switch control algorithm can effectively suppress over-frequent switching actions and gives good control performance by reducing the vibration amplitude by 45%,about 50% improvement from the traditional SSDI with a separate piezoelectric element and a classical switch.  相似文献   

3.
Studies in the past focused on the implementation of semi-passive damping techniques that could significantly reduce structural vibration. Recently, the performances of these damping techniques have been enhanced by artificially increasing the voltage amplitude delivered by the piezoelectric patches with an external voltage source. To maintain the stability of this damping method, an adaptive voltage source must be used. To satisfy this requirement, this study proposes an enhanced semi-passive damping technique based on pulse-width modulation. The proposed method allows the waveform of the piezoelectric voltage to adapt to the vibration velocity. Thus, this method can maintain its stability with a constant voltage source and simultaneously exhibit superior performance. This study consists of a theoretical part and an experimental proof-of-concept demonstration of the proposed damping technique.  相似文献   

4.
The piezoelectric shunt damping technique based on the direct piezoelectric effect has been known as a simple, low-lost, lightweight, and easy to implement method for passive damping control of structural vibration. In this technique, a piezoelectric material is used to transform mechanical energy to electrical energy. When applying the piezoelectric shunt damping technique to passively control structural vibration, the piezoelectric materials must be bonded on or embedded in host structure where large strain is induced during vibration, thus to ensure vibrational mechanical energy to be transformed into electrical energy as much as possible. In this paper, the concept of vibration control efficiency of a piezoelectric shunt damping system is proposed and studied theoretically and experimentally. In the study, PZT patches are used as energy converter, and the vibration control efficiency is expressed by the vibration reduction rate per area of the PZT patches. Emphasis is laid on the effect of the generalized electromechanical coupling coefficient K31 on the vibration control efficiency. Four PZT patches with different sizes are bonded on the geometrical central area of four similar clamped aluminum plates, respectively, and vibration control experiments are conducted for these plates using the R-L shunt circuit. The results indicate that the bigger the coupling coefficient K31, the larger the rate of vibration reduction, and hence, the higher the vibration control efficiency. It also shows that the vibration responses of the first mode of the plates bonded with different PZT patches can be reduced by about 30.5%,48.58%,85.47%, and 89.91%, respectively. It comes to a conclusion that the vibration control efficiency of the piezoelectric shunt damping system decreases with the increase of the area of the PZT patch, whereas the vibration reduction of the plate increases with the area of the PZT patch. Therefore, it is necessary to make topology optimization for the PZT patch in the vibration control utilizing the piezoelectric shunt damping technique.  相似文献   

5.
The piezoelectric shunt damping technique based on the direct piezoelectric effect has been known as a simple, low-lost, lightweight, and easy to implement method for passive damping control of structural vibration. In this technique, a piezoelectric material is used to transform mechanical energy to electrical energy. When applying the piezoelectric shunt damping technique to passively control structural vibration, the piezoelectric materials must be bonded on or embedded in host structure where large strain is induced during vibration, thus to ensure vibrational mechanical energy to be transformed into electrical energy as much as possible. In this paper, the concept of vibration control efficiency of a piezoelectric shunt damping system is proposed and studied theoretically and experimentally. In the study, PZT patches are used as energy converter, and the vibration control efficiency is expressed by the vibration reduction rate per area of the PZT patches. Emphasis is laid on the effect of the generalized electromechanical coupling coefficient K 31 on the vibration control efficiency. Four PZT patches with different sizes are bonded on the geometrical central area of four similar clamped aluminum plates, respectively, and vibration control experiments are conducted for these plates using the R-L shunt circuit. The results indicate that the bigger the coupling coefficient K 31, the larger the rate of vibration reduction, and hence, the higher the vibration control efficiency. It also shows that the vibration responses of the first mode of the plates bonded with different PZT patches can be reduced by about 30.5%, 48.58%, 85.47%, and 89.91%, respectively. It comes to a conclusion that the vibration control efficiency of the piezoelectric shunt damping system decreases with the increase of the area of the PZT patch, whereas the vibration reduction of the plate increases with the area of the PZT patch. Therefore, it is necessary to make topology optimization for the PZT patch in the vibration control utilizing the piezoelectric shunt damping technique.  相似文献   

6.
Piezoelectric materials can be used for structural damping because of their ability to efficiently transform mechanical energy to electrical energy and vice versa. The electrical energy may be dissipated through a connected load resistance. In this paper, a new optimization technique for the optimal piezoelectric shunt damping system is investigated in order to search for the optimal shunt electrical components of the shunt damping circuit connected to the piezoelectric patch on a vibrating structure for the structural vibration suppression of several modes. The vibration suppression optimization technique is based on the idea of using the piezoelectric shunt damping system, the integrated p-version finite element method (p-version FEM), and the particle swarm optimization algorithm (PSOA). The optimal shunt electrical components for the piezoelectric shunt damping system are then determined by wholly minimizing the objective function, which is defined as the sum of the average vibration velocity over a frequency range of interest. Moreover, the optimization technique is performed by also taking into account the inherent mechanical damping of the controlled structure with the piezoelectric patch. To numerically evaluate the multiple-mode damping capability by the optimal shunting damper, an integrated p-version FEM for the beam with the shunt damping system is modeled and developed by MATLAB. Finally, the structural damping performance of the optimal shunt damping system is demonstrated numerically and experimentally with respect to the beam. The simulated result shows a good agreement with that of the experimental result. This paper was recommended for publication in revised form by Associate Editor Eung-Soo Shin Jin-Young Jeon received his Ph.D. degree in Mechanical and Aerospace Engineering from Tokyo Institute of Technology in 2005. Dr. Jeon is currently a senior engineer at Digital Printing Division, Digital Media & Communications Business at Samsung Electronics Co., Ltd., Korea. His research interests are the areas of structural-acoustic optimization, sound quality, motion quality, and vibration control.  相似文献   

7.
The piezoelectric materials, as the most widely used functional materials in smart structures, have many outstanding advantages for sensors and actuators, especially in vibration control, because of their excellent mechanical-electrical coupling characteristics and frequency response characteristics. Semi-active vibration control based on state switching and pulse switching has been receiving much attention over the past decade because of several advantages. Compared with standard passive piezoelectric damping, these new semi-passive techniques offer higher robustness. Compared with active damping systems, their implementation does not require any sophisticated signal processing systems or any bulky power amplifier. In this review article, the principles of the semi-active control methods based on switched shunt circuit, including state-switched method, synchronized switch damping techniques, and active control theorybased switching techniques, and their recent developments are introduced. Moreover, the future directions of research in semi-active control are also summarized.  相似文献   

8.
魏胜 《机械与电子》2022,40(1):14-19
根据压电构造方程和振动原理,建立压电振动能量收集的耦合场动力学模型。详细推导电阻尼与外接电阻和机电耦合系数之间的数学关系,并揭示外接电阻对系统固有弹性的作用效果。通过数值模拟研究电阻尼特性对谐振频率、振动幅值和功率的影响关系,并从能量转换效率的角度分析优化电阻与最大输出功率的关系。分别对多种外接电阻条件下压电梁的输出电压及功率进行实验测试,实验结果表明,电阻尼导致压电梁的谐振频率发生偏移,其大小与外接电阻值成正比,而且在外接优化电阻时输出功率最大。  相似文献   

9.
Shell type components and structures are very common in many mechanical and structural systems. Modeling and analysis of adaptive piezothermoelastic shell laminates represent a high level of sophistication and complexity. In this paper a finite element model is developed for the active control of thermally induced vibration of laminated composite shells with piezoelectric sensors and actuators. The present model takes into account the mass, stiffness and thermal expansion of the piezoelectric patches. A Co continuous nine-node degenerated shell element is implemented to model the structure. The piezoelectric sensing layer senses the structural vibration and a suitable voltage applied in the piezoelectric actuator layer suppresses the oscillation. Actuator and sensor are coupled together with a control algorithm so as to actively control the dynamic response of the structure in a close loop. Numerical results are generated for a cylindrical shell and it is observed that thermally induced vibration of a laminated cylindrical shell can be suppressed through the application of piezoelectric sensor and actuator. Effects of variation in control gain and piezoelectric layer area coverage (PAC) have been studied. Higher control gain is more effective in damping out the vibration. Although the damping is enhanced by increase in PAC, increase beyond a certain level may not be useful in view of smaller efficacy and increased weight.  相似文献   

10.
风洞模型主动抑振器的设计与实验   总被引:2,自引:0,他引:2  
研究了风洞模型主动振动的抑制原理,并结合叠堆式压电陶瓷作动器的压电效应设计了一套并联式主动抑振器。首先,针对模型支杆系统及其动力学特征,分析了支杆抑振原理,提出了一种基于叠堆式压电陶瓷作动器的风洞模型抑振器。然后,构建了抑振器实时控制系统,针对其驱动位移滞后的特点,研究了基于PD调节器的控制方法。最后,搭建了地面实验平台,利用锤击法和激振法对抑振器进行了地面实验。实验结果表明:抑振器具有提高支杆系统阻尼的能力,对风洞模型在俯仰和偏航两个方向上的抑振效果明显,特别是俯仰方向上,抑制器工作后系统阻尼比可由0.009提高到0.092,抑振后剩余振幅比例约为25%。试验结果验证了该风洞模型主动抑振器的可行性与有效性。  相似文献   

11.
以一四边固定矩形板为例,通过实验方法对三种不同的压电分流阻尼技术(RL串联压电分流电路、RL并联压电分流电路以及RL-C并联压电分流电路)的振动控制效果进行分析和比较。实验结果表明,当压电分流电路的参数调节到最优值时,能够有效降低结构振动;RL串联压电分流电路和RL并联压电分流电路的控制效果基本相等;RL—C并联压电分流电路能够降低分流电路中的最优电感值,但是控制效果也随之变差。实验结果还表明压电分流电路对电感值相当敏感,如果电感值偏离最优值,有可能会使得控制效果大幅下降。  相似文献   

12.
A kind of novel multi-layer piezoelectric actuator is proposed and integrated with control- lable constrained damping treatment to perform hybrid vibration control.The governing equation of the system is derived based on the constitutive equations of elastic,viscoelastic and piezoelectric materials,which shows that the magnitude of control force exerted by multi-layer piezoelectric actua- tor is the quadratic function of the number of piezoelectric laminates used but in direct proportion to control voltage.This means that the multi-layer actuator can produce greater actuating force than that by piezoelectric laminate actuator with the same area under the identical control voltage.The optimal location placement of the multi-layer piezoelectric actuator is also discussed.As an example,the hybrid vibration control of a cantilever rectangular thin-plate is numerically simulated and carried out experimentally.The simulated and experimental results validate the power of multi-layer piezoelectric actuator and indicate that the present hybrid damping technique can effectively suppress the low fre- quency modal vibration of the experimental thin-plate structure.  相似文献   

13.
电磁辅助支承的被动式减振研究   总被引:3,自引:2,他引:3  
李慧敏  曾胜  汪希萱 《中国机械工程》2003,14(24):2087-2089
结合电磁轴承的原理和结构以及旋转机械的减振理论,提出一种新型结构的支承。它将电磁轴承安装在主支承上,由主支承提供主刚度,而电磁执行器则根据需要提供附加的阻尼和刚度。对其被动式减振机理进行了研究,建立了恒压源式被动控制模型。其中支承中的电磁执行器利用直流电励磁,产生被动阻尼和刚度,阻尼值的大小由励磁电压的大小决定。该支承结构应用于实验转子系统,取得了较好的减振效果。  相似文献   

14.
采用压电分流阻尼原理,对根部粘贴压电陶瓷片的柔性悬臂梁振动控制进行了实验研究。实验中设计了一个由电容、电阻和运算放大器组成的等效电感电路,解决了压电分流电路设计中的超大电感器问题。根据测试得到的带压电分流电路悬臂梁的闭路和开路自然频率,确定出了压电分流电路的最优参数,对悬臂梁的瞬态振动和单频简谐激励下的稳态振动控制实验表明了压电分流阻尼被动控制结构振动的有效性。  相似文献   

15.
This paper presents vibration control of a flexible beam structure using a hybrid mount which consists of elastic rubber and piezoelectric stack actuator. After identifying stiffness and damping properties of the rubber and piezoelectric elements, a mechanical model of the hybrid mount is established. The mount model is then incorporated with the beam structure, and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the beam structure subjected to high-frequency and small magnitude excitations. The controller is experimentally realized and measured control responses such as acceleration of the beam structure and force transmission through the hybrid mount are evaluated and presented in both frequency and time domains.  相似文献   

16.
周期性机械振动主动控制算法   总被引:1,自引:0,他引:1  
为提高周期性机械装置的隔振性能,减少其对底座(或地面)及周围环境的影响,采用由弹性橡胶和压电堆作动器组成的主动悬置(active control mount, ACM).针对压电堆作动器输出位移较小的情况,设计液压位移放大机构.通过对压电作动器和橡胶主簧性能的分析,建立由主动悬置构成的隔振系统的力学模型.周期性机械振动系统,其周期振动信号可用作控制同步信号,因此控制系统采用基于同步滤波-X LMS(least mean square)算法的自适应控制策略,传递到机座的残余力作为误差信号,实现对周期性机械振动系统的主动控制.计算机仿真实验结果表明,采用这种主动悬置和同步滤波-X LMS算法的主动控制系统,相对于采用普通橡胶悬置的被动系统,明显减少了对底座的力传递,减振效果明显.  相似文献   

17.
高速转子系统振动控制技术评述   总被引:13,自引:1,他引:12  
高速转子系统在正常工作过程中必须通过临界转速,此时由于不平衡质量的作用,转子系统会产生共振,导致强烈的振动。降低系统支承刚度以降低临界转速、增大支承阻尼,以减小振幅,这些措施可以抑制系统通过临界转速时的振动幅值和外传力。在振动被动控制技术中,常用弹性支承和挤压油膜阻尼器、金属橡胶减振器、高聚物复合材料减振结构等,降低系统支承刚度,增大支承阻尼,以减小系统振动;在主动控制技术中,通过主动控制挤压油膜阻尼器的参数,改变支承的刚度和阻尼的大小,以控制系统的振动;以及采用形状记忆合金调节器、电磁阻尼器、压电调器等装置,来主动控制系统的振动。目前控制技术仍存在装置结构复杂、性能不稳定等问题,采用粘弹阻尼复合材料与滚动轴承钢外圈复合结构的一体化滚动轴承,足一种有发展前途的研究方向。  相似文献   

18.
分析PVDF(polyvinylidene fluoride)压电效应振动速度测量和悬臂梁振动的主动阻尼控制原理,指出基于压电效应的振动速度测量将引入并放大噪声信号,严重降低振动主动阻尼控制算法的稳定性以及振动控制的效果:提出利用自适应滤波技术对时变的振动速度信号进行滤波,提高速度反馈的主动阻尼控制算法的稳定性,实现悬臂梁振动的有效抑制。最后以一悬臂粱为例,进行数值仿真,验证该方法的有效性。  相似文献   

19.
Comparison between four piezoelectric energy harvesting circuits   总被引:1,自引:0,他引:1  
This paper investigates and compares the efficiencies of four different interfaces for vibration-based energy harvesting systems. Among those four circuits, two circuits adopt the synchronous switching technique, in which the circuit is switched synchronously with the vibration. In this study, a simple source-less trigger circuit used to control the synchronized switch is proposed and two interface circuits of energy harvesting systems are designed based on the trigger circuit. To validate the effectiveness of the proposed circuits, an experimental system was established and the power harvested by those circuits from a vibration beam was measured. Experimental results show that the two new circuits can increase the harvested power by factors 2.6 and 7, respectively, without consuming extra power in the circuits.  相似文献   

20.
采用阻抗分析技术,根据压电材料的机电耦合特性和RLC电路的电学阻抗特性,详细推导了RLC串联压电分流阻尼系统的机械阻抗特性,研究了作单模态振动的悬臂梁在粘贴压电片后形成的压电悬臂梁系统的位移传递函数特性。借助于调谐质量阻尼减振理论,进行了压电分流阻尼系统的参数优化分析,并通过算例验证了参数优化前后压电分流阻尼系统对悬臂梁振动的被动控制效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号