首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Double ballbar test for the rotary axes of five-axis CNC machine tools   总被引:2,自引:0,他引:2  
In this paper a new method that uses the double ballbar to inspect motion errors of the rotary axes of five-axis CNC machine tools is presented. The new method uses a particular circular test path that only causes the two rotary axes to move simultaneously and keeps the other three linear axes stationary. Therefore, only motion errors of the two rotary axes will be measured during the ballbar test. The theoretical trace patterns of various error origins, including servo mismatch and backlash, are established. Consequently, the error origins in the rotary block can be diagnosed by examining whether similar patterns appear in the motion error trace. The method developed was verified by practical tests, and the servo mismatch of the rotary axes was successfully detected.  相似文献   

2.
This paper proposes a new ball bar test method for the inspection of dynamic errors of rotary axes in five-axis CNC machine tools. The test circle is defined in a workpiece coordinate system and the ball bar test is performed by simultaneously driving of linear–rotary axis couple. The effects of the center position and the radius on the setting values, rotational range and measurement sensitivity of the rotary axis were investigated. The proposed ball bar test is performed in two steps: the circular positioning and the circular tracking with a continuous feed. Axial dynamic errors are obtained by subtracting the measured tracking errors from the positioning errors. A ball bar test system (BBTS) was developed to plan the tool path and the tool orientation, to communicate with the five-axis CNC controller and to process the measured data. Error patterns were simulated regarding the gain mismatch, backlash and tracking direction to help a fast diagnosis of the error sources. Simulations and experimental results prove the effectiveness of the new test method.  相似文献   

3.
Feed optimization for five-axis CNC machine tools with drive constraints   总被引:6,自引:0,他引:6  
Real time control of five-axis machine tools requires smooth generation of feed, acceleration and jerk in CNC systems without violating the physical limits of the drives. This paper presents a feed scheduling algorithm for CNC systems to minimize the machining time for five-axis contour machining of sculptured surfaces. The variation of the feed along the five-axis tool-path is expressed in a cubic B-spline form. The velocity, acceleration and jerk limits of the five axes are considered in finding the most optimal feed along the tool-path in order to ensure smooth and linear operation of the servo drives with minimal tracking error. The time optimal feed motion is obtained by iteratively modulating the feed control points of the B-spline to maximize the feed along the tool-path without violating the programmed feed and the drives’ physical limits. Long tool-paths are handled efficiently by applying a moving window technique. The improvement in the productivity and linear operation of the five drives is demonstrated with five-axis simulations and experiments on a CNC machine tool.  相似文献   

4.
This paper presents an analytical prediction and compensation of contouring errors in five-axis machining of splined tool paths. The position commands are first fitted to piecewise quintic splines while respecting velocity, acceleration and jerk continuity at the spline joints. The transfer function of each servo drive is kept linear by compensating the disturbance effect of friction with a feed-forward block. Using the analytically represented five-axis, splined tool path, splined tracking errors and kinematic model of the five-axis machine tool, contouring errors are predicted ahead of axis control loops. The contouring errors are decoupled into three linear and two rotary drives, and the position commands are modified before they are sent to servo drives for execution. The proposed method has been experimentally demonstrated to show significant improvement in the accuracy of contouring five-axis tool paths.  相似文献   

5.
基于球杆仪的数控机床误差识别与补偿   总被引:5,自引:0,他引:5  
论述了数控机床几何误差的球杆仪识别及软件补偿技术。提出了从Renishaw球杆仪测量数控机床的联动误差数据中识别反向间隙、直线度、垂直度、定位误差的一种方法;建立了机床结构的每个误差元和切削刀具相对工件位置误差相联系的通用数学模型;用球杆仪在数控机床上进行补偿前后加工轨迹的测量实验表明该方法效率高、效果显著。  相似文献   

6.
This paper presents a smooth spline interpolation technique for five-axis machining of sculptured surfaces. The tool tip and orientation locations generated by the CAM system are first fitted to quintic splines independently to achieve geometric jerk continuity while decoupling the relative changes in position and orientation of the cutter along the curved path. The non-linear relationship between spline parameters and displacements along the path is approximated with ninth order and seventh order feed correction splines for position and orientation, respectively. The high order feed correction splines allow minimum deviation from the reference axis commands while preserving continuous jerk on three translational and two rotary drives. The proposed method has been experimentally demonstrated to show improvements in reducing the excitation of inertial vibrations while improving tracking accuracy in five-axis machining of curved paths found in dies, molds and aerospace parts.  相似文献   

7.
When five axis CNC machine tools follow series linear toolpath segments, the drives experience velocity, acceleration and jerk discontinuities at the block transition points. The discontinuities result in fluctuations on machine tool motions which lead to poor surface quality. This paper proposes to insert quintic and septic micro-splines for the tool tip and tool-orientation, respectively, at the adjacent linear toolpath segments. Optimal control points are calculated for position and orientation splines to achieve C3 continuity at the junctions while respecting user-defined tolerance limits. The geometrically smoothed corners are traveled at a smoothly varying feed with cubic acceleration trajectory profile. The proposed method is experimentally demonstrated to show improvements in motion smoothness and tracking accuracy in five-axis machining of free-form surfaces found in dies, molds and aerospace parts.  相似文献   

8.
This paper presents a new servo control method for five-axis machining applications. The proposed method conducts a direct elimination of the deviation error, the orientation error, and the tracking-lag error that are the main concerns for five-axis tool-path control. To achieve this purpose, the proposed five-axis control system is based on a real-time transformation between the drive-coordinate basis, in which the five drives are operated, and the workpiece-coordinate basis, in which the deviation error etc., are defined.  相似文献   

9.
Nonlinear and configuration-dependent five-axis kinematics make contouring errors difficult to estimate and control in real time. This paper proposes a generalized method for the on-line estimation and control of five-axis contouring errors. First, a generalized Jacobian function is derived based on screw theory in order to synchronize the motions of linear and rotary drives. The contouring error components contributed by all active drives are estimated through interpolated position commands and the generalized Jacobian function. The estimated axis components of contouring errors are fed back to the position commands of each closed loop servo drive with a proportional gain. The proposed contouring error estimation and control methods are general, and applicable to arbitrary five-axis tool paths and any kinematically admissible five-axis machine tools. The proposed algorithms are verified experimentally on a five-axis machine controlled by a modular research CNC system built in-house. The contouring errors are shown to be reduced by half with the proposed method, which is simple to implement in existing CNC systems.  相似文献   

10.
Fixe-axis capabilities on machine tools are becoming increasingly common. However, the problem of modeling the propagation of errors of individual axes through the kinematic chain, and their effect on the position and orientation errors of the cutting tool in the machine's work space has not been addressed. To increase the accuracy capabilities of such machines it is crucial to be able to study this propagation and develop approaches to minimize their effects on the errors at the tool tip. This paper discusses an approach to model the effects of the positioning errors of a machine's axes on the accuracy (positioning and orientation) of the cutting tool in its work space. Computer programs are developed for implementing the models and generating error contours or maps showing the variation of the different components of a machine's volumetric errors in its work space. This is a useful tool that can be used in machine tool design for the budgeting of errors and for optimization of a machine's accuracy.  相似文献   

11.
In this paper, a contour error model of the tool center point (TCP) for a five-axis machine tool is proposed to estimate dynamic contour errors on three types of measuring paths. A servo tuning approach to achieve five-axis dynamic matching is utilized to improve contouring performance of the cutting trajectory. The TCP control function is developed to generate measuring trajectories where five axes are controlled simultaneously to keep the TCP at a fixed point. The interpolation method of the rotary axes with S-shape acceleration/deceleration (ACC/DEC) is applied to plan smooth five-axis velocity profiles. The contour error model for five axes is derived by substituting five-axis motion commands into servo dynamics models. The steady state contour error (SSCE) model is demonstrated to illustrate three particular dynamic behaviors: the single-circle with amplitude modulation, double-circle effect and offset behavior. Furthermore, the model is also utilized to investigate the behaviors of dynamic contour errors change in 3D space. The factors that affect dynamic contour errors, including the initial setup position, feedrate and five-axis servo gains, are analyzed. With the developed servo tuning process under the measuring paths (CK1, CK2 and CK4), the contour errors caused by servo mismatch are reduced remarkably. Finally, experiments are conducted on a desktop five-axis engraving machine to verify the proposed methodology can improve dynamic contouring accuracy of the TCP significantly.  相似文献   

12.
论述了一种三维五轴数控光纤激光切割机,该设备配置有激光头旋转装置,可以对三维金属板进行高速切割加工,制成任何所需轮廓的产品,具有双工位切换加工功能,是三维复杂结构钣金件柔性加工设备。  相似文献   

13.
A new compensation method for geometry errors of five-axis machine tools   总被引:4,自引:1,他引:4  
The present study aims to establish a new compensation method for geometry errors of five-axis machine tools. In the kinematic coordinate translation of five-axis machine tools, the tool orientation is determined by the motion position of machine rotation axes, whereas the tool tip position is determined by both machine linear axes and rotation axes together. Furthermore, as a nonlinear relationship exists between the workpiece coordinates and the machine axes coordinates, errors in the workpiece coordinate system are not directly related to those of the machine axes coordinate system. Consequently, the present study develops a new compensation method, the decouple method, for geometry errors of five-axis machine tools. The method proposed is based on a model that considers the tool orientation error only related to motion of machine rotation axes, and it further calculates the error compensations for rotation axes and linear axes separately, in contrast to the conventional method of calculating them simultaneously, i.e. determines the compensation of machine rotation axes first, and then calculates the compensation associated with the machine linear axes. Finally, the compensation mechanism is applied in the postprocessor of a CAM system and the effectiveness of error compensation is evaluated in real machine cutting using compensated NC code. In comparison with previous methods, the present compensation method has attributes of being simple, straightforward and without any singularity point in the model. The results indicate that the accuracy of positioning was improved by a factor of 8–10. Hence, the new compensation mechanism proposed in this study can effectively compensate geometry errors of five-axis machine tools.  相似文献   

14.
Dynamic calibration of CNC machine tools   总被引:1,自引:0,他引:1  
Machine calibration has become an important tool for assessing and maintaining machine accuracy, and for providing a measure of production quality. The calibration techniques supported by the calibration standards and the available metrology technology use static measurement cycles [BS3800, Part 2 (1991); ISO 230-2, Part 2 (1988)]. Static calibration cycles can be time-consuming to perform, and with coarse step sizes cannot give a complete picture of the machine performance. Recent advances in the laser interferometer technology used for machine calibration allow data to be captured dynamically. Dynamic data-capture technology provides the potential for dynamic machine calibration. Dynamic calibration overcomes the inherent problems of static calibration, being quick to perform and providing detailed information on machine performance. This paper describes the concept of dynamic machine calibration. In particular a novel dynamic calibration technique, conceived at the University of Huddersfield, is described. This technique utilizes existing calibration technology. Example dynamic calibrations, that highlight the potential of the technique, are presented and discussed.  相似文献   

15.
DOG-I型并联数控机床加减速控制   总被引:1,自引:0,他引:1  
针对五轴并联数控机床的特点,文章在已有的研究基础上提出一种加减速控制方法.首先,在程序段的插补周期内均分其刀具姿态改变量,解决了刀具姿态变化问题;其次,根据并联机床的运动学特性,限制其刀具进给速度,并对伺服输入进行检查,通过细分进给量来控制伺服输入速度在一个合理的范围之内.这种加减速控制方法简单易行,具有较大的实用价值.  相似文献   

16.
A mathematical analysis of a sampled-data servo-drive system controlled by the step control algorithm for computer numerical control (CNC) is presented. The step control algorithm provides for rapid and precise positioning and is ready for practical implementation. Its performance, including stability, damping ratio, maximum overshooting, steady-state error for both the step and ramp input, and bandwidth for accurate circular motion, is studied and depicted in design charts. The design procedure proceeds by using the design charts to choose the weighting factor and the sampling period to satisfy the specifications of the system. The effectiveness of the proposed control algorithm is demonstrated by simulation and experiment.  相似文献   

17.
数控机床的PLC编程方法   总被引:1,自引:0,他引:1  
陈学军 《机床电器》2009,36(5):18-20
PLC是数控机床系统与机床主体之间连接的关键中间环节,本文以西门子802系列数控系统为例,分析了数控机床中PLC的控制功能以及接口信号和地址的分配,通过实例介绍了数控机床的PLC编程方法。  相似文献   

18.
This paper proposes an on-machine measurement (OMM) of all location errors on five-axis machine tools. Five machining patterns are successively performed on a cubic workpiece. The basic idea is to use a set of large rotations of rotary axes to prolong the moving distance of linear axes when squareness errors of linear axes are identified. Then, a set of small rotations of rotary axes are used to decouple the squareness errors of linear and rotary axes. Based on this, the long and deep slots in previous machining tests are improved to be a set of short and shallow ones. These miniaturized slots reduce the material removal and minimize the influence of cutting force and thermal deformation on the measuring results. Then the cutting tool is substituted by a laser displacement sensor (LDS) to measure the mismatch between the finished surfaces of the corresponding slots. All the measured surfaces are located on the bottom of the slots to fit the LDS characteristic of one dimensional measurement. Three gestures of the rotary table and tilting head are used to implement the single-setup OMM and the influence of location errors on the measuring results is compensated. Validation of the identified values is also provided by a set of simple tests using different measuring instruments. The efficiency and accuracy of location errors measurement method on five-axis machine tools are improved.  相似文献   

19.
Fast real-time NURBS path interpolation for CNC machine tools   总被引:5,自引:1,他引:5  
In this paper, a novel fast real-time non-uniform rational B-spline (NURBS) path interpolation method is presented. This method efficiently integrates the data processing of a NURBS path in a CNC controller, from pre-processing to real-time interpolation. In the calculation of the total length of the NURBS path, the numerical adaptive quadrature method adapts to the integrand, i.e. the first derivative of the length function, automatically, dividing the parameter interval into subintervals with fine or coarse spacing according to the varying condition of the integrand. This new method takes full advantage of the subdivision scheme. The key point is to generate inverse length functions (ILF) for each resulting subinterval. In the real-time NURBS path interpolation, the new setting path parameter can be calculated directly using the ILF without the need for any time-consuming computation of NURBS derivatives and iteration. The proposed method is extremely fast, accurate and suitable for real-time implementation, and simulations and practical tests proved its effectiveness.  相似文献   

20.
NURBS-based fast geometric error compensation for CNC machine tools   总被引:1,自引:0,他引:1  
In this paper, a novel method for the compensation of geometric errors of CNC machine tools is presented. The key idea is to use the basis functions of the setting NURBS path to approximate its error compensation function and to generate a new compensated NURBS path. In this way, both the setting and the compensated NURBS path have the same NURBS form. More importantly, the control points of the error compensation function can be obtained by simply calculating the positioning deviations of the control points of the setting NURBS path using the error model. A high compensation accuracy can be achieved through the systematic insertion of new knots, which creates new control points and raises the flexibility of NURBS in representing the error compensation function. The real-time interpolation of the compensated NURBS path completes the error compensation automatically. Simulations and experiments have shown that the new method delivers the same positioning accuracy as a model-based real-time geometric error compensation method does, but without additional real-time CPU loading. The proposed method can also be implemented in the post-processor of a CAM system for off-line compensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号