首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous and conventional Fe-containing ZSM-5 and ZSM-12 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnation method and tested in the selective catalytic reduction (SCR) of NO with NH3. It was found that for both Fe/HZSM-5 and Fe/HZSM-12 catalysts with similar Fe contents, the activity of the mesoporous samples in NO SCR with NH3 is significantly higher than for conventional samples. Such a difference in the activity is probably related with the better diffusion of reactants and products in the mesopores and better dispersion of the iron particles in the mesoporous zeolite as was confirmed by SEM analysis. Moreover, the maximum activity for the mesoporous zeolites is found at higher Fe concentrations than for the conventional zeolites. This also illustrates that the mesoporous zeolites allow a better dispersion of the metal component than the conventional zeolites. Finally, the influence of different pretreatment conditions on the catalytic activity was studied and interestingly, it was found that it is possible to increase the SCR performance significantly by preactivation of the catalysts in a 1% NH3/N2 mixture at 500 °C for 5 h. After preactivation, the activity of mesoporous 6 wt% Fe/HZSM-5 and 6 wt% Fe/HZSM-12 catalyst is comparable with that of traditional 3 wt% V2O5/TiO2 catalyst used as a reference at temperatures below 400 °C and even more active at higher temperatures.  相似文献   

2.
《Applied Catalysis A: General》2001,205(1-2):195-199
Reaction between ethanol and ammonia have been studied on various zinc oxide modified HZSM-5 (Si/Al=225) catalysts under various conditions of temperature, C/N ratio of the reactants and their WHSV. Two pure zinc oxides were taken for the study. One was a highly active acidic form Z1 and the other was a stoichiometric non acidic zinc oxide Z2. The activity of the catalysts for ammonolysis reaction followed the order Z2⪡Z1⪡HZSM-5. However, for composite catalysts containing 10–40% Z1 on HZSM-5, the activity increased synergistically and became maximum (∼81% conversion of alcohol) for the catalyst 40% Z1/HZSM-5 and about 50% conversion for the catalyst 40% Z2/HZSM-5. The products formed were mainly N-heterocycles. Some novel high molar mass N-heterocycles were also detected. The catalytic activity and product selectivity was crucially affected by the reaction conditions, particularly the effect of temperature; the optimum yield of the products was obtained at the catalyst temperature of 723 K, C/N ratio 0.3892 and WHSV of 2.5 h−1.  相似文献   

3.
Supported-NiO catalysts were tested in the synthesis of carbon nanotubes and carbon nanofibers by catalytic decomposition of methane at 550 °C and 700 °C. Catalytic activity was characterized by the conversion levels of methane and the amount of carbons accumulated on the catalysts. Selectivity of carbon nanotubes and carbon nanofiber formation were determined using transmission electron microscopy (TEM). The catalytic performance of the supported-NiO catalysts and the types of filamentous carbons produced were discussed based on the X-ray diffraction (XRD) results and the TEM images of the used catalysts. The experimental results show that the catalytic performance of supported-NiO catalysts decreased in the order of NiO/SiO2 > NiO/HZSM-5 > NiO/CeO2 > NiO/Al2O3 at both reaction temperatures. The structures of the carbons formed by decomposition of methane were dependent on the types of catalyst supports used and the reaction temperatures conducted. It was found that Al2O3 was crucial to the dispersion of smaller NiO crystallites, which gave rise to the formation of multi-walled carbon nanotubes at the reaction temperature of 550 °C and a mixture of multi-walled carbon nanotubes and single-walled carbon nanotubes at 700 °C. Other than NiO/Al2O3 catalyst, all the tested supported-NiO catalysts formed carbon nanofibers at 550 °C and multi-walled carbon nanotubes at 700 °C except for NiO/HZSM-5 catalyst, which grew carbon nanofibers at both 550 °C and 700 °C.  相似文献   

4.
For the development of efficient solid acid catalysts for the catalytic dehydration of glycerol to acrolein, catalysts made from montmorillonitic clay activated by sulfuric acid were investigated. Montmorillonite was activated in diluted sulfuric acid in the concentration range of 5–40 wt.%. The effects of sulfuric acid treatment on the structure of the montmorillonite were characterized by X-ray diffraction, measurements of acidity, N2 adsorption–desorption isotherms, and Fourier transform infrared spectroscopy. The catalytic behavior of sulfuric acid-activated montmorillonite catalysts in the gas-phase dehydration of glycerol were investigated under varying conditions, including the reaction temperature, the feed rate, and the concentration of glycerol. After montmorillonitic clay was activated by sulfuric acid, the layered structural features of montmorillonite remained nearly intact. Ca2 +-montmorillonite was changed to H+-montmorillonite by ion exchange reaction during activation. The optimal catalytic glycerol dehydration reaction conditions were found to be: temperature at 320 °C, liquid hourly space velocity (LHSV) = 18.5 h 1, concentration of glycerol solution = 10 wt.%, and the flow rate of N2 carrier gas = 10 mL/min. A conversion of 54.2% of glycerol and a yield of 44.9 wt.% acrolein were achieved over the montmorillonite catalyst activated by an aqueous 10 wt.% sulfuric acid solution. The H+ in the interlayer space of acid-activated montmorillonite catalysts played a critical role in the catalytic dehydration of glycerol. The temperature, the LHSV, and the concentration of glycerol affected the performance of the catalysts through their influence on the reaction mechanism, the contact time, and the reaction equilibrium.  相似文献   

5.
In this study the catalytic behavior of Co/HZSM-5 in Fischer–Tropsch synthesis (FTS) has been examined in order to optimize the operating conditions for acquiring maximum selectivity. Catalysts consisted of various quantities of cobalt particles supported on HZSM-5 zeolite were prepared by impregnation method. In order to investigate the effects of operating parameters on catalytic performance and to estimate the optimum conditions, experiments were designed using L-16 Taguchi method. All experimental runs were carried out in a fixed bed reactor under isobaric condition (2 MPa). According to the Taguchi model and considering the impact of the operating parameters on the process output and performing certain validation tests, the optimum operating conditions for the process were determined as T = 513 K, space velocity = 1.1 h?1, Co on HZSM-5 = 11.6%, H2/CO = 1.7.In the next step, a kinetic model for FTS based on carbide mechanism was presented applying the synthesized catalyst under the optimum conditions. This model is a combination of kinetic rates of hydrocarbon formation and the relations for the growth probability and olefin re-adsorption factor.  相似文献   

6.
The alkali carbonates displayed a good catalytic activity for soot oxidation and their catalytic performances follow the order K2CO3 > Na2CO3 > Li2CO3 with soot ignition onset temperatures (IOTs) of 310 °C, 320 °C and 320 °C respectively. Na/K and Li/Na/K carbonate catalysts produced by combinations of the three alkali carbonates displayed the lowest IOT of about 320 °C that was higher than that of pure K2CO3. It was found that the variation of Li:Na:K molar ratios has very limited effect on the catalytic activity, but considerable effect on the thermal stability of the catalysts.Thermal treatment at 700 °C caused a limited change of IOT, but the deterioration of catalytic performance. In the Li/Na/K catalyst system, the formation of crystalline phases with low melting temperature was observed.  相似文献   

7.
《Catalysis communications》2011,12(15):1220-1223
Shape-selective amination of ethylene oxide over HZSM-5 was thoroughly investigated. TPD, FTIR and catalytic performance showed that HZSM-5 was more active than the sodium form. Relative selectivity of product was mainly controlled by the crystal size of ZSM-5. Surface modification such as silyation was effective for enhancing the shape selectivity. Among the catalysts tested in this study, HZSM-5 with SiO2/Al2O3 ratio being 76.7 exhibited the best performance. At 353 K and total pressure of 8.0 MPa the total selectivity of MEA and DEA was 97.6%, the yield reached 96.6%, the best performance achieved so far among EO amination.  相似文献   

8.
The catalytic properties of nanocrystalline HZSM-5 catalysts with high Si/Al molar ratio (ca. 65) were investigated in the gas phase dehydration of aqueous glycerol. Compared with bulk HZSM-5, the small-sized catalyst exhibits greatly enhanced catalytic performance in glycerol dehydration even with very high GHSV (=1438 h?1). Catalysts with different Si/Al ratios were studied, but it is difficult to separate the influence of Si/Al ratio from that of particle size. However, by varying the proton exchange degree for one mother batch of zeolite, a series of HxNa1–xZSM-5 catalysts with same particle size and different Brønsted acid site densities was prepared. The catalytic results for this series of samples show that high density of Brønsted acid sites favors the production of acrolein. Based on these results, small-sized HZSM-5 with high aluminum content appears to be most promising for gas phase dehydration of glycerol.  相似文献   

9.
Nanoscale and microscale HZSM-5 zeolite catalysts were prepared and characterized by using SEM, XRD, IR, TPD and modified Hammett indicator method. Their performances in the dehydration of bio-ethanol into ethylene were compared in a fixed-bed reactor at 240 °C under atmospheric pressure. The results show that nanoscale HZSM-5 zeolite catalyst exhibits better stability than microscale HZSM-5 zeolite catalyst. When the 95(v) % bio-ethanol is used as the reactant, over nanoscale HZSM-5 catalyst, the conversion of bio-ethanol and the selectivity for ethylene almost keep constant during 630 h reaction, while over microscale HZSM-5 zeolite catalyst, the conversion of bio-ethanol decreases after 60 h reaction; in the case of the 45(v) % bio-ethanol employed as the feedstock, over nanoscale HZSM-5 catalyst, the conversion of bio-ethanol and the selectivity for ethylene almost keep constant during 320 h reaction, while over microscale HZSM-5 zeolite catalyst, both the conversion of bio-ethanol and the selectivity for ethylene decrease almost at the beginning of the reaction.  相似文献   

10.
The acid amount and acid strength of nanoscale HZSM-5 and modified HZSM-5 were studied. It has been shown that only acid sites with acid strength H0  +2.27 are related to the catalytic activity in toluene disproportionation. The acid sites with acid strength H0  −3.0 are easily passivated and the acid site with acid strength −3.0 < H0  +2.27 are the body of valid acid site in modified HZSM-5. The concentration of acid site did not linearly relate to the reactivity in toluene disproportionation.  相似文献   

11.
Zr-based zeolite catalysts were investigated for the first time in selective catalytic reduction of NO by hydrocarbon (HC-SCR). Highly dispersed zirconium species, especially the amorphous ultrafine zirconium oxide in the catalyst, considerably enhanced the activity for selective catalytic reduction of NO by acetylene (C2H2-SCR), both by accelerating the NO oxidation to NO2 and enlarging the NO2 adsorption capacity of the catalyst under the reaction conditions. Thus a durable and active Zr/HZSM-5 catalyst giving 89% of NO conversion to N2 at 350 °C in 1600 ppm NO, 800 ppm C2H2, and 9.95% O2 in helium was obtained. For the C2H2-SCR of NO, it was suggested that acidic sites with strong acidity on the Zr-based HZSM-5 catalysts are indispensable to initiate the aimed reaction via the route of NO oxidation to NO2, which explains the higher activity for the reaction obtained over the Zr/HZSM-5 catalyst sample with lower SiO2/Al2O3 ratio. The zirconium species could only functioned in the presence of protons in the C2H2-SCR of NO, so a synergistic effect between the zirconium species and protons of the Zr/HZSM-5 catalyst was proposed.  相似文献   

12.
Liquid phase Claisen–Schmidt condensation between 2′-hydroxyacetophenone and benzaldehyde to form 2′-hydroxychalcone, followed by intramolecular cyclisation to form flavanone was carried out over zinc oxide supported metal oxide catalysts under solvent free condition. The reaction was carried out over ZnO supported MgO, BaO, K2O and Na2O catalysts with 0.2 g of each catalyst at 140 °C for 3 h. Magnesium oxide impregnated zinc oxide was observed to offer higher conversion of 2′-hydroxyacetophenone than other catalysts. Further MgO impregnated with various other supports such as HZSM-5, Al2O3 and SiO2 were also used for the reaction to assess the suitability of the support. The order of activity of the support is ZnO > SiO2 > Al2O3 > HZSM-5. Various weight percentage of MgO was loaded on ZnO to optimize maximum efficiency of the catalyst system. The impregnation of MgO (wt%) in ZnO was optimized for better conversion of 2′-hydroxyacetophenone. The effect of temperature and catalyst loading was studied for the reaction.  相似文献   

13.
The catalytic conversion of PFAD (palm fatty acid distillate) to aromatics has been studied over HZSM-5, Ga/HZSM-5, and Zn/HZSM-5 catalysts. The presence of both Ga and Zn promoted the aromatization of PFAD. The higher aromatics yield of Zn/HZSM-5 was achieved by the presence of two zinc species; exchanged Zn2 + promoting the dehydrogenation of paraffins and ZnO promoting the decarboxylation of oxygenates. The shifting from decarbonylation over the Brønsted acid site of the parent HZSM-5 to decarboxylation over ZnO preserved the Brønsted acid site for aromatization, thus increasing the aromatics yield.  相似文献   

14.
The catalytic activity of FeHZSM-5 was investigated for the conversion of both methanol and mixed C3° + C4 hydrocarbons. For methanol conversion at WHSV = 1 h 1 and 470 °C, 0.35% FeHZSM-5 showed increased selectivity for propylene and C2=–C4= olefins by 21% and 4%, respectively, compared with HZSM-5. The selectivity of propane and butylene decreased. High temperature favored the conversion of C3° + C4 mixture while the selectivity of ethene + propylene achieved a maximum at 470 °C. Improved olefins selectivity for methanol conversion was attributed to FeHZSM-5 with more weak acid but less strong acid amount and to further transformation of the products.  相似文献   

15.
A series of Pt/Sn/M/γ-Al2O3 catalysts with different third metal (M = Zn, In, Y, Bi, and Ga) were prepared by a sequential impregnation method for use in the direct dehydrogenation of n-butane to n-butene and 1,3-butadiene. In the direct dehydrogenation of n-butane, Pt/Sn/Zn/γ-Al2O3 catalyst showed the best catalytic performance. Catalytic performance decreased in the order of Pt/Sn/Zn/γ-Al2O3 > Pt/Sn/In/γ-Al2O3 > Pt/Sn/γ-Al2O3 > Pt/Sn/Y/γ-Al2O3 > Pt/Sn/Bi/γ-Al2O3 > Pt/Sn/Ga/γ-Al2O3. The catalytic performance increased with increasing metal–support interaction and Pt surface area of the catalyst.  相似文献   

16.
Catalytic gasification of wood (Cedar) biomass was carried out using a specially designed flow-type double beds micro reactor in a two step process: temperature programmed non-catalytic steam gasification of biomass was performed in the first (top) bed at 200–850 °C followed by catalytic decomposition gasification of volatile matters (including tars) in the second (bottom) bed at a constant temperature, mainly 600 °C. Iron oxide catalysts, which transformed to Fe3O4 after use possessed catalytic activity in biomass tar decomposition. Above 90% of the volatile matters was gasified by the use of iron oxide catalyst (prepared from FeCl3 and NH3aq) at SV of 4.5 × 103 h?1. Tar was decomposed over the iron oxide catalysts followed by water gas shift reaction. Surface area of the iron oxide seemed to be an important factor for the catalytic tar decomposition. The activity of the iron oxide catalysts for tar decomposition seemed stable with cyclic use but the activity of the catalysts for the water gas shift reaction decreased with repeated use.  相似文献   

17.
Preparation and catalytic performance of skeletal Ni catalysts supported on Al2O3 were studied. The effects of alloy powder/pseudo-boehmite powder mass ratios and calcination temperatures of precursors on surface properties, compressive strength and catalytic performance were investigated. It was found that catalysts prepared by precursors which were molded with alloy powder/pseudo-boehmite powder mass ratio of 4/6 and calcinated at 860 °C in air atmosphere exhibited excellent compressive strength (16.11 N/mm), high dicyclopentadiene conversion (> 95%) and appropriate THDCPD selectivity (> 50%) during 1000-hour evaluation. The operational conditions were obtained as following: T = 120 °C, P = 2.0 MPa, LSHV = 2.0 h 1 and hydrogen–oil ratio = 300:1.  相似文献   

18.
Keggin-type lacunary polyoxotungstates [PW11O39(H2O)]7  (PW11) and metal-modified [PW11O39(H2O)M]5  (M = Ni2 + or Co2 +) were incorporated into the mesoporous silica pillared clays (MSPC) by a hydrothermal sol–gel method. The resulting materials retain the layered structure of the clay precursor and possess a mesoporous structure. The catalytic performance of the materials was tested using oxidative desulfurization of dibenzothiophene-containing model oil as a probe reaction. The results indicated that PW11-MSPC possess an excellent catalytic performance.  相似文献   

19.
The effect of TiO2 on the hydrodenitrogenation (HDN) performance of MoP/MCM-41 was investigated using quinoline and decahydroquinoline as the model molecules. The catalysts were characterized by XRD, CO chemisorption, TEM, TPR and pyridine FT-IR. Addition of TiO2 enhanced the C–N bond cleavage activity of MoP/MCM-41 but inhibited its dehydrogenation activity. A maximum HDN activity was observed when the TiO2 loading was 5 wt%. The characterization results indicated that introduction of TiO2 did not affect the formation of MoP phase. The TiO2-containing catalysts possessed higher CO uptake than MoP/MCM-41, but no significant differences in the acid properties and particle size distributions were observed for all the catalysts. XPS results revealed a surface enrichment of TiO2 in Ti-containing catalysts and small amount of these surface TiO2 can be partially reduced to Tin+ (n < 4). It is suggested that these Tin+ (n < 4) species may be responsible for the promoting effect of TiO2 on the HDN performance of MoP/MCM-41.  相似文献   

20.
Hydrodeoxygenation of phenol, as model compound of bio-oil, was investigated over Pd catalysts, using formic acid as a hydrogen donor. The order of activity for deoxygenation of phenol with Pd catalysts was found to be: Pd/SiO2 > Pd/MCM-41 > Pd/CA > Pd/Al2O3 > Pd/HY  Pd/ZrO2  Pd/CW > Pd/HSAPO-34 > Pd/HZSM-5. The good performance of Pd/SiO2 is owing to its proper pore structure and large specific surface area. The high level of Brønsted acid sites in SiO2 also favors the deoxygenation of phenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号