首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用菜籽油脱臭馏出物制备生物柴油新工艺   总被引:1,自引:1,他引:0  
以菜籽油脱臭馏出物为原料,首先以D002阳离子交换树脂作催化剂,进行酯化反应,降低原料酸值;然后以氢氧化钾作催化剂进行醇解反应来制备生物柴油的二步法新工艺路线。结果表明:D002阳离子交换树脂具有很强的催化活性,游离脂肪酸最高转化率达97.7%,连续使用4次后,催化活性仍然很高,达96%以上;碱催化过程中甘油酯的最高转化率达97.4%。产品品质大都符合美国ASTMD6751-03生物柴油标准。由此可见,先用树脂催化处理高酸值废油,然后进行碱催化制备生物柴油二步法工艺是一种切实可行的方法。  相似文献   

2.
邵平  姜绍通  谈建 《化学工程》2007,35(3):59-62
通过分子蒸馏技术从菜籽油脱臭馏出物中制备生物柴油,并通过对比试验,研究了柴油机燃烧生物柴油和普通柴油对发动机经济性和排放特性的影响。研究结果表明,脱臭馏出物中制备的生物柴油与普通的0#柴油性质相似,脂肪酸甲酯质量分数在90%以上。在生物柴油的排放中,除CO2排放和耗油率相对升高,CO2排放增加幅度达到20%左右;CO,CH和碳烟都相对降低,烟度和CH最高降幅分别达到54%和88%;NOx排放在高载荷阶段体积分数上升。  相似文献   

3.
4.
采用分子蒸馏耦合脂肪酶催化水解菜籽油脱臭馏出物,并用碱中和、水洗萃取以浓缩维生素E.着重考察了脂肪酶活力,添加的水量和反应时间对水解效果的影响.通过正交实验获得较好的水解工艺条件添加的水量/水解原料比15 mL/15 g,脂肪酶活/水解原料105 U/g,反应时间5 h,反应温度37℃,经后续处理后维生素E纯度达到17.3%,回收率85%.固定化酶可以重复利用多次.  相似文献   

5.
Soybean oil deodorizer distillate (SODD) contains steryl esters in addition to tocopherols and sterols. Tocopherols and sterols have been industrially purified from SODD but no purification process for steryl esters has been developed. SODD was efficiently separated to low b.p. substances (including tocopherols and sterols) and high b.p. substances (including 11.2 wt% DAG, 32.1 wt% TAG, and 45.4 wt% steryl esters) by molecular distillation. The high b.p. fraction is referred to as soybean oil deodorizer distillate steryl ester concentrate (SODDSEC). We attempted to purify steryl esters after a lipase-catalyzed hydrolysis of acylglycerols in SODDSEC. Screening of industrially available lipases indicated that Candida rugosa lipase was most effective. Based on the study of several factors affecting hydrolysis, the reaction conditions were determined as follows: ratio of SODDSEC/water, 1∶1 (w/w); lipase amount, 15 U/g reaction mixture; temperature, 30°C. When SODDSEC was agitated for 24 h under these conditions, acylglycerols were almost completely hydrolyzed and the content of steryl esters did not change. However, study with a mixture of steryl oleate/trilinolein (1∶1, w/w) indicated that about 20% of constituent FA in steryl esters were exchanged with constituent FA in acylglycerols. Steryl esters in the oil layer obtained by the SODDSEC treatment with lipase were successfully purified by molecular distillation (purity, 97.3%; recovery, 87.7%).  相似文献   

6.
Methylation of canola oil deodorizer distillate catalyzed by a nonspecific lipase was investigated. The conversion of fatty acids to methyl esters has been optimized by using a statistical design. Up to 96.5% conversion of fatty acids to their methyl esters has been achieved without the aid of vacuum or any water-removing agent. The effects of temperature, ratio of the reactants (methanol: fatty acids in the deodorizer distillate) and enzyme concentration on the equilibrium conversion were studied. The temperature and ratio of the reactants showed a significant effect on the conversion of fatty acids to methyl esters and they exhibited a strong interactive effect. Enzyme concentration in the range of 2.7% to 4.3% did not show a significant effect on the equilibrium conversion of fatty acids. Greater than 95% conversion of fatty acids to methyl esters was achieved at temperatures around 50°C and at a ratio of the reactants between 1.8 and 2.0. The inhibitory effect of hydrophilic methanol on the enzyme activity was largely reduced by working at the lower temperature range (around 50°C).  相似文献   

7.
In this study, an integrated strategy using supercritical fluids for extraction of squalene from olive oil deodorizer distillate (OODD), one of the most important by‐products of the olive oil refining process is presented. First, OODD was esterified in supercritical methanol, and then squalene was extracted from the sample consisting of 66% methyl ester using supercritical CO2. The extraction conditions, i.e., pressure (88.2–121.8 bar), temperature (41.6–58.4°C) and extraction time (129.6–230.4 min), were optimized via RSM to achieve the highest squalene content. The optimal results were obtained at a temperature of 52.05°C, pressure of 104.8 bar and extraction time of 180 min. Consequently, two kinds of value‐added products such as biodiesel (up to 96% FAME, in extract) and olive squalene (up to 75%, in raffinate) were produced in shorter processing times when compared with distillation results of 70 h. Practical applications: Traditionally, squalene is extracted from liver oil of rare deep‐sea sharks. Here we present the recovery of vegetal squalene in high purity from OODD. Our approach also presents a simple, reliable, and mobile solution. Squalene is widely used in cosmetics as a protective agent and natural moisturizer and as an adjuvant in influenza vaccines.  相似文献   

8.
The isolation of tocopherols and sterols together as a concentrate from sunflower oil deodorizer distillate was investigated. The sunflower oil deodorizer distillate was composed of 24.9% unsaponifiable matter with 4.8% tocopherols and 9.7% sterols, 28.8% free fatty acid (FFA) and 46.3% neutral glycerides. The isolation technology included process steps such as biohydrolysis, bioesterification and fractional distillation. The neutral glycerides of the deodorizer distillates were hydrolyzed byCandida cylindracea lipase. The total fatty acids (initial FFA plus FFA from neutral glycerides) were converted into butyl esters withMucor miehei lipase. The esterified product was then fractionally distilled in a Claisen-vigreux flask. The first fraction, which was collected at 180–230°C at 1.00 mm of Hg for 45 min, contained mainly butyl esters, hydrocarbons, oxidized products and some amount of free fatty acids. The fraction collected at 230–260°C at 1.00 mm Hg for 15 min was rich in tocopherols (about 30%) and sterols (about 36%). The overall recovery of tocopherols and sterols after hydrolysis, esterification and distillation were around 70% and 42%, respectively, of the original content in sunflower oil deodorizer distillate.  相似文献   

9.
Tocols (tocopherols + tocotrienols) have been concentrated efficiently from rice bran oil (RBO) deodorizer distillate using solvent at low temperature. The levels of total tocols, total tocopherols, and total tocotrienols in RBO deodorizer distillate (starting material) were 31.5, 14.9, and 16.6 mg/g, respectively. Nine different solvents were tested, and acetonitrile was selected as the optimal solvent for concentrating tocols from the RBO deodorizer distillate. There was a significant (p <0.05) increase in the tocol level of the liquid fractions with decreasing temperature, for incubation temperatures up to –20 °C. In addition, significant differences (p <0.05) were observed in the relative percentages of α‐tocopherol, γ‐tocopherol, α‐tocotrienol, and γ‐tocotrienol between the raw sample and liquid fractions obtained at different temperatures using acetonitrile as the solvent. The concentration of the tocols from the RBO deodorizer distillate was temperature dependent, and a maximum of 89.9 mg/g was attained in the liquid fraction at – 40 °C. The relative percentage of tocotrienol homologs in the liquid fraction obtained at – 40 °C was approximately 80%. With acetonitrile as the solvent, the optimal temperature for concentrating the tocols from RBO deodorizer distillate was –20 °C when yield was considered.  相似文献   

10.
Squalene was recovered from an olive oil deodorizer distillate (OODD) containing 40% of squalene by a two-step process. The first step was to esterify the free fatty acids (FFAs) to make them less volatile. The second step was to separate the squalene by molecular distillation. The best esterification conditions were found to be 190°C and 360 min, where FFA content of the reaction mixture was reduced from 49.3% to 7.9%, however, an inevitable squalene loss (30%) was also observed due to a discontinuous operation. The remaining squalene (28%) in the esterified mixture was then distilled using a molecular distillation unit at elevated temperatures (190–230°C) and pressures (0.05–5 mmHg). When the temperature and vacuum during distillation increased, FFA content in the distillate reduced while distillate yield and squalene purity increased. The highest distillate yield (27.7%) and squalene purity (98.1%) were obtained at the highest applied temperature (230°C) under the lowest absolute pressure (0.05 mmHg), where FFA content of distillate was measured as 1.8%. High percentage of squalene (95%–98%) could be distilled at 230°C between 0.05 and 0.5 mmHg absolute pressures. The overall squalene recovery after all treatments was calculated as 68%.  相似文献   

11.
Tocopherols have been purified from deodorizer distillate produced in the final deodorization step of vegetable oil refining by a process including molecular distillation. Deodorizer distillate contains mainly tocopherols, sterols, and free fatty acids (FFA); the presence of sterols hinders tocopherol purification in good yield. We found that Candida rugosa lipase recognized sterols as substrates but not tocopherols, and that esterification of sterols with FFA could be effected with negligible influence of water content. Enzymatic esterification of sterols with FFA was thus used as a step in tocopherol purification. High boiling point substances including steryl esters were removed from soybean oil deodorizer distillate by distillation, and the resulting distillate (soybean oil deodorizer distillate tocopherol concentrate; SODDTC) was used as a starting material for tocopherol purification. Several factors affecting esterification of sterols were investigated, and the reaction conditions were determined as follows: A mixture of SODDTC and water (4∶1, w/w) was stirred at 35°C for 24 h with 200 U of Candida lipase per 1 g of the reaction mixture. Under these conditions, approximately 80% of sterols was esterified, but tocopherols were not esterified. After the reaction, tocopherols and FFA were recovered as a distillate by molecular distillation of the oil layer. To enhance further removal of the remaining sterols, the lipase-catalyzed reaction was repeated on the distillate under the same reaction conditions. As a result, more than 95% of the sterols was esterified in total. The resulting reaction mixture was fractionated to four distillates and one residue. The main distillate fraction contained 65 wt% tocopherols with low contents of FFA and sterols. In addition, the residue fraction contained high-purity steryl esters. Because the process presented in this study includes only organic solvent-free enzymatic reaction and molecular distillation, it is feasible as a new industrial purification method of tocopherols. This work was presented at the Biocatalysis symposium in April 2000, held at the 91st Annual Meeting and Expo of the American Oil Chemists Society, San Diego, CA.  相似文献   

12.
Polylactide (PLA) is the most used biodegradable and biobased food packaging polymer for rigid containers and films. However, its low ductility is a hurdle for increasing its applications in flexible food packaging. A solution is the use of additives. Palm oil deodorizer distillate (PODC) is revealed to be an excellent additive promoting PLA ductility. PODC is a by‐product of vegetable oil refining, which is available in stable quality and in sufficient amounts. Amorphous PLA/PODC blends had an elongation at break of around 130% and that of semi‐crystalline blends was still around 55% compared to the initial 5% of neat PLA. At the same time the PLA rigidity and high glass transition temperatures were kept. PODC was also a very efficient processing aid, allowing for film blow extrusion. The blends were stable in properties during six months without exudation. They complied with legal norms of Food Contact Materials (EU 10/2011) and induced no sensorial alteration of packed food. Therefore PODC is a very interesting alternative to common plasticizers for the production of flexible PLA packaging films. © 2016 Society of Chemical Industry  相似文献   

13.
Brassicasterol (5,22-ergostadien-3β-ol) was isolated from the steam deodorizer distillate of rapeseed oil and purified by acetylation, bromination, chromatography on 20% AgNO3/SiO2 columns and hydrolysis. Brassicasteryl and stigmasteryl (5,22-stigmastadien-3β-ol) acetates were brominated, and the yields of products and solubilities of the tetrabromides from the two steryl acetates were compared. Stigmasteryl acetate tetrabromide is less soluble than the corresponding brassicasteryl derivative; yet the latter precipitates selectively during bromination of a mixture of the two steryl acetates. This is explained on the basis of the stereochemistry of the bromine atoms in the side chains of the two steryl acetate tetrabromides. Hydrogenation of brassicasteryl acetate over Raney nickel gave the 22,23-dihydro derivative in excellent yield. The latter was separated from small amounts of ergostanyl acetate on a 20% AgNO3/SiO2 column. Contribution No. 2077, Arizona Agricultural Experiment Station. Presented at the AOCS Meeting, New Orleans, April 1973.  相似文献   

14.
Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations.  相似文献   

15.
The antioxidative effect of unsaponifiable matter from olive oil deodorizer distillate on the stability of sunflower oil during frying and on the quality of potato chips were studied. Physical and chemical characteristics of sunflower oil samples with or without different concentrations of unsaponifiable matter were examined during frying at 180°C for ten consecutive days. The addition of 1% of unsaponifiable matter to sunflower oil showed the highest effect in retarding the oxidation deterioration of oil during frying of potato chips. This protective effect was attributed to high levels of squalene, Δ-avenasterol, and tocopherols. During ten frying days, the amount of squalene decreased to 79% and both tocopherols and Δ-avenasterol to 69% in frying sunflower oil. Oil absorbed by potato chips and the characteristics of the oil extracted from potato chips before and after three months of storage were determined. The amount of oil absorbed by potato chips ranged from 37.3 to 39.3% during frying. The unsaponifiable fractions remaining in the frying medium showed protective effects on the rate of oxidation of the oil extracted from potato chips. The uptake of unsaponifiable matter by chips was the highest during the first frying day. Chips with high amounts of squalene, tocopherols, and sterols showed highest antioxidative stability during storage for three months at ambient temperature. Potato chips fried in sunflower oil treated with 1% unsaponifiable matter showed a bright yellow colour, moderate crispness, high score flavour, and were well accepted by panelists. These data of sensory evaluation supported the results of chemical analyses of oil extracted from fresh and stored chips.  相似文献   

16.
In industry, deodorizer distillate waste is one of the last products of refined edible oil after the removal of commercially important value components such as fatty acids, sterols, squalene, and vitamin E. The refinery process itself is the cause of a significant amount of loss in vitamin E due to distillation and thermal oxidation. The distillate waste has a very limited commercial value, therefore requires additional costs for a safe environmental disposal. One of the main vitamin E oxidation products found in large quantities in oil waste is tocopherolquinone (TQ). A literature search has revealed that in the past several techniques including a variety of solvent extractions, saponification, or column extraction have been used for TQ isolation with limited success. The present study is a new cost‐effective liquid–liquid extraction method developed to isolate α‐TQ from vegetable oil steam distillate or distillate waste. High recovery results ranging from 31 to 120% were obtained depending on the ratio between the sample and three different organic extraction solvents (acetonitrile, methanol, and hexane) combined.  相似文献   

17.
Junhua Zhang  Shangxing Chen  Yuanyuan Yan 《Fuel》2010,89(10):2939-2944
Zanthoxylum bungeanum seed oil (ZSO) with high free fatty acids (FFA) can be used for biodiesel production by ferric sulfate-catalyzed esterification followed by transesterification using calcium oxide (CaO) as an alkaline catalyst. Acid value of ZSO with high FFA can be reduced to less than 2 mg KOH/g by one-step esterification with methanol-to-FFA molar ratio 40.91:1, ferric sulfate 9.75% (based on the weight of FFA), reaction temperature 95 °C and reaction time 2 h, which satisfies transesterification using an alkaline catalyst. The response surface methodology (RSM) was used to optimize the conditions for ZSO biodiesel production using CaO as a catalyst. A quadratic polynomial equation was obtained for biodiesel conversion by multiple regression analysis and verification experiments confirmed the validity of the predicted model. The optimum combination for transesterification was methanol-to-oil molar ratio 11.69:1, catalyst amount 2.52%, and reaction time 2.45 h. At this optimum condition, the conversion to biodiesel reached above 96%. This study provided a practical method to biodiesel production from raw feedstocks with high FFA with high reaction rate, less corrosion, less toxicity, and less environmental problems.  相似文献   

18.
郭琳琳  郑龙  高文艺  任立国 《应用化工》2012,41(12):2135-2138,2146
采用浸渍法制备了二氧化锆负载氢氧化钾固体碱催化剂KOH/ZrO2,在空气中焙烧4 h后,用于大豆油与甲醇的酯交换反应,考察了KOH/ZrO2固体碱催化剂的焙烧温度、醇油摩尔比、催化剂质量分数和反应时间等因素对产品收率的影响。结果表明,催化剂焙烧温度为500℃,KOH负载量为20%,醇油摩尔比为6∶1,催化剂用量为5%,反应时间为3 h时,大豆油酯交换反应转换率为97.73%。  相似文献   

19.
研究了猪油原位萃取-酶法转化制生物柴油。考察了溶剂用量、萃取时间、萃取温度等对油脂得率的影响,探讨了以Novozyme 435酶为催化剂直接转化猪油生物柴油。结果表明,萃取猪油的较优参数为:乙酸甲酯为萃取剂,乙酸甲酯用量(mL)与猪板油质量(g)比为8∶1,萃取时间3 h,萃取温度50℃;以Novozyme 435脂肪酶转化猪油制备生物柴油,得率为95.12%,当Novozyme 435酶和Lipozyme TLIM酶混合比为1∶1时,生物柴油转化率最高,达97.12%。  相似文献   

20.
During physical refining of oil derived from ‘high temperature short time’ (HTST) pretreated rapeseeds, polyphenols are separated from the oil during deodorization and accumulate together with other high‐value minor compounds in the so‐called deodorizer distillate. For recovery of these compounds single‐stage and multistage short path distillations were carried out in a laboratory scale apparatus at evaporation temperatures between 110 and 170°C and pressures between 0.006 and 0.01 mbar. In addition, the removal of traces of pesticides from rapeseed deodorizer distillate was investigated. It was observed that these compounds can be separated from deodorizer distillate by means of short path distillation very effectively. On the basis of these experiments, a recovery process for polyphenols was proposed involving short path distillation, acid catalyzed esterification with methanol, solvent crystallization and solvent extraction processes. The final product was a polyphenol enriched extract containing about 14% of polyphenols. A polyphenol recovery of 50% is considered to be reachable and fractions rich in tocopherols and sterols may be obtained as by‐products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号