首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
异构无线网络垂直切换技术综述   总被引:1,自引:0,他引:1  
王煜炜  刘敏  房秉毅 《通信学报》2015,36(Z1):224-234
垂直切换是多网融合的基础,是实现异构网络互通、支持不同接入方式无缝衔接的核心技术,目前正在受到业界的重点关注,并成为学术界研究的热点问题。随着无线移动通信技术向接入多元化、网络一体化和应用综合化的方向发展,各种蜂窝移动接入、宽带无线接入和固定接入将共同接入基于IP的统一核心网络,通过网络间的垂直切换,支持用户的移动性和移动过程中业务的连续性。首先给出了垂直切换的定义和基本概念,介绍了垂直切换的分类和基本流程,随后详细论述垂直切换的切换判决和切换执行2个环节。针对切换判决,总结了现有判决算法,重点评述各代表算法工作原理并剖析论其特点和存在的不足。针对切换执行,详述了现有垂直切换执行机制的工作原理和适用场景,并分析其优缺点。最后,对未来垂直切换技术的研究方向进行了展望。  相似文献   

2.
Wireless networking is becoming an increasingly important and popular way of providing global information access to users on the move. One of the main challenges for seamless mobility is the availability of simple and robust vertical handoff algorithms, which allow a mobile node to roam among heterogeneous wireless networks. In this paper, motivated by the facts that vertical handoff procedure is done on mobile nodes and battery power may be one crucial parameter for certain mobile nodes, a simple and robust two-step vertical handoff decision algorithm is proposed for heterogeneous wireless mobile networks. To the best of our knowledge, this is the first vertical handoff algorithm that takes the classification of mobile nodes into consideration, one is resource-poor mobile nodes, and the other is resource-rich mobile nodes. This new feature makes it more applicable in the real world. In addition, dynamic new call blocking probability is firstly introduced by this paper to make handoff decision for wireless networks. The experiment results have shown that the proposed algorithm outperforms traditional algorithms in bandwidth utilization, handoff dropping rate and handoff rate.  相似文献   

3.
SIP-based vertical handoff between WWANs and WLANs   总被引:3,自引:0,他引:3  
Future-generation wireless networks have been envisioned as the integration of various wireless access networks, including both wireless wide area networks and wireless local area networks. In such a heterogeneous network environment, seamless mobility support is the basis of providing uninterrupted wireless services to mobile users roaming between various wireless access networks. Because of transparency to lower-layer characteristics, ease of deployment, and greater scalability, the application-layer-based session initiation protocol has been considered the right candidate for handling mobility in heterogeneous wireless networks. However, SIP entails application-layer transport and processing of messages, which may introduce considerable delay. As a case study of the performance of mobility management protocols in the heterogeneous wireless networks, we analyze the delay associated with vertical handoff using SIP in the WLAN-UMTS internetwork. Analytical results show that WLAN-to-UMTS handoff incurs unacceptable delay for supporting real-time multimedia services, and is mainly due to transmission of SIP signaling messages over erroneous and bandwidth-limited wireless links. On the other hand, UMTS-to-WLAN handoff experiences much less delay, mainly contributed by the processing delay of signaling messages at the WLAN gateways and servers. While the former case requires the deployment of soft handoff techniques to reduce the delay, faster servers and more efficient host configuration mechanisms can do the job in the latter case.  相似文献   

4.
Mobility support in wireless Internet   总被引:7,自引:0,他引:7  
The tremendous advancement and popularity of wireless access technologies necessitates the convergence of multimedia (audio, video, and text) services on a unified global (seamless) network infrastructure. Circuit-switched proprietary telecommunication networks are evolving toward more cost-effective and uniform packet-switched networks such as those based on IP. However, one of the key challenges for the deployment of such wireless Internet infrastructure is to efficiently manage user mobility. To provide seamless services to mobile users, several protocols have been proposed over the years targeting different layers in the network protocol stack. In this article we present a cross-layer perspective on the mobility protocols by identifying the key features of their design principles and performance issues. An analysis of the signaling overhead and handoff delay for some representative protocols in each layer is also presented. Our conclusion is that although the application layer protocol is worse than the protocols operating in the lower layers, in terms of handoff delay and signaling overhead, it is better suited as a potential mobility solution for the next-generation heterogeneous networks, if we consider such factors as protocol stack modification, infrastructure change, and inherent operational complexity.  相似文献   

5.
The 4G or Beyond 3G wireless networks is consist of IP-based heterogeneous access networks from 3G cellular, WiFi, WiMAX to other emerging access technologies such as mesh networks. The key objective of designing the next generation wireless networks is to support of mobile subscribers. To support the mobile host in the hybrid wireless access technologies, many solutions based on network protocol stack have been proposed in the literature. In this article, after review of mobility concepts, a special attention is given to some of the mobility management methods as well as handover techniques across various wireless access networks. We have also compared the major mobility protocols in each layer for their features. Finally, some of the open issues that needed to be addressed in mobility management protocol in the next generation wireless networks are outlined.  相似文献   

6.
Seamless SIP-based mobility for multimedia applications   总被引:4,自引:0,他引:4  
Application-level protocol abstraction is required to support seamless mobility in next-generation heterogeneous wireless networks. Session initiation protocol (SIP) provides the required abstraction for mobility support for multimedia applications in such networks. However, the handoff procedure with SIP suffers from undesirable delay and hence packet loss in some cases, which is detrimental to applications like voice over IP (VoIP) or streaming video that demand stringent quality of service (QoS) requirements. In this article we present a SIP-based architecture that supports soft handoff for IP-centric wireless networks. Soft handoff ensures that there is no packet loss and that the end-to-end delay jitter is kept under control.  相似文献   

7.
We describe the design, implementation and evaluation of a programmable architecture for profiling, composing and deploying handoff services. We argue that future wireless access networks should be built on a foundation of open programmable networking allowing for the dynamic deployment of new mobile and wireless services. Customizing handoff control and mobility management in this manner calls for advances in software and networking technologies in order to respond to specific radio, mobility and service quality requirements of future wireless Internet service providers. Two new handoff services are deployed using programmable mobile networking techniques. First, we describe a multi-handoff access network service, which is capable of simultaneously supporting multiple styles of handoff control over the same physical wireless infrastructure. Second, we discuss a reflective handoff service, which allows programmable mobile devices to freely roam between heterogeneous wireless access networks that support different signaling systems. Evaluation results indicate that programmable handoff architectures are capable of scaling to support a large number of mobile devices while achieving similar performance to that of native signaling systems.  相似文献   

8.
With the advent of a myriad of wireless networking technologies, a mobile host today can potentially be equipped with multiple wireless interfaces that have access to different wireless networks. It is widely perceived that future generation wireless networks will exhibit a similar trend in supporting a large variety of heterogeneous wireless access technologies that a mobile host can choose from. In this paper, we consider such a multi-homed mobile host and propose an end-to-end solution that enables the seamless use of heterogeneous wireless access technologies. The unique features of the proposed solution include: (i) a purely end-to-end approach to handle host mobility that requires no support from the underlying network infrastructure, (ii) seamless vertical handoffs when the mobile host migrates from one access network to another, (iii) ability to support different congestion control schemes for a live connection traversing different interfaces, and (iv) effective bandwidth aggregation when the mobile host has simultaneous access to multiple networks. We present the design and details of the proposed approach, and evaluate its performance through simulations and real-life field experiments.  相似文献   

9.
Over the last decade, we have witnessed a growing interest in the design and deployment of various network architectures and protocols aimed at supporting mobile users as they move across different types of networks. One of the goals of these emerging network solutions is to provide uninterrupted, seamless connectivity to mobile users giving them the ability to access information anywhere, anytime. Handoff management, an important component of mobility management, is crucial in enabling such seamless mobility across heterogeneous network infrastructures. In this work, we investigate the handoff performance of three of the most widely used mobility protocols namely, Mobile IP, Session Initiation Protocol (SIP), and Stream Control Transmission Protocol (SCTP). Our empirical handoff tests were executed on an actual heterogeneous network testbed consisting of wired, wireless local area, and cellular networks using performance metrics such as handoff delay and handoff signaling time. Our empirical results reveal that Mobile IP yields the highest handoff delay among the three mobility protocols. In addition, we also found that SIP and SCTP yield 33 and 55% lower handoff delays respectively compared to Mobile IP.  相似文献   

10.
In the near future, the Internet is likely to become an All-IP network that provides various multimedia services over wireless networks. Although the earliest VoIP applications did not consider the end-node mobility, researchers have attempted to support mobility in current VoIP protocols, such as Session Initial Protocol (SIP)-based mobility. The SIP-based mobility is considered because it can readily support mobility. However, calling disruptions may occur in traditional SIP mid-call terminal mobility because handoff procedure may be required, depending on the implementation and the real network deployment considerations. In any case, issues in the combined SIP/RSVP for guaranteeing QoS of VoIP service under mobile environment are also considered to be crucial. Therefore, this study describes the solutions by devising novel hierarchy network architecture. Also, the mechanisms including help with neighboring users in adjacent cells and the third party call control to overcome those issues are included. The simulation results indicate that the proposed technique is practical and better executive than conventional schemes.  相似文献   

11.
It is envisaged that next generation wireless networks (NGWN) will be heterogeneous, consisting of multiple radio access technologies (RATs) coexisting in the same geographical area. In these heterogeneous wireless networks, mobile terminals of different capabilities (heterogeneous terminals) will be used by subscribers to access network services. We investigate the effect of using heterogeneous mobile terminals (e.g. single-mode, dual-mode, triple-mode, etc.) on call blocking and call dropping probabilities in cooperative heterogeneous wireless networks. We develop analytical models for heterogeneous mobile terminals and joint radio resource management in heterogeneous wireless networks. Using a two-class three-RAT heterogeneous wireless network as an example, the effect of using heterogeneous terminals in the network is evaluated. Results show the overall call blocking/dropping probability experienced by subscribers in heterogeneous wireless networks depends on the capabilities of mobile terminals used by the subscribers. In the worst case scenario, when all subscribers use single-mode mobile terminals, each subscriber is confined to a single RAT and consequently, joint radio resource management in heterogeneous wireless network has no improvement on new call blocking and handoff call dropping probabilities. However, in the best case scenario, when all subscribers use three-mode terminals, new class-1 call blocking probability decreases from 0.37 (for 100% single-mode terminals) to 0.05, at the arrival rate of 6 calls per minute. New class-2 call blocking probability also decreases from 0.8 to 0.52. Similarly, handoff class-1 call dropping probability decreases from 0.14 to 0.003, and handoff class-2 call dropping probability decreases from 0.44 to 0.09.  相似文献   

12.
In heterogeneous wireless network environment, wireless local area network (WLAN) is usually deployed within the coverage of a cellular network to provide users with the convenience of seamless roaming among heterogeneous wireless access networks. Vertical handoffs between the WLAN and the cellular network maybe occur frequently. As for the vertical handoff performance, there is a critical requirement for developing algorithms for connection management and optimal resource allocation for seamless mobility. In this paper, we develop a mathematical model for vertical handoff decision problem, and propose a multi-objective optimization immune algorithm-based vertical handoff decision scheme. The proposed scheme can enable a wireless access network not only to balance the overall load among all base stations and access points but also maximize the collective battery lifetime of mobile terminals. Results based on a detailed performance evaluation study are also presented here to demonstrate the efficacy of the proposed scheme.  相似文献   

13.
The next-generation wireless networks are evolving toward a versatile IP-based network that can provide various real-time multimedia services to mobile users. Two major challenges in establishing such a wireless mobile Internet are support of fast handoff and provision of quality of service (QoS) over IP-based wireless access networks. In this article, a DiffServ resource allocation architecture is proposed for the evolving wireless mobile Internet. The registration-domain-based scheme supports fast handoff by significantly reducing mobility management signaling. The registration domain is integrated with the DiffServ mechanism and provisions QoS guarantee for each service class by domain-based admission control. Furthermore, an adaptive assured service is presented for the stream class of traffic, where resource allocation is adjusted according to the network condition in order to minimize handoff call dropping and new call blocking probabilities  相似文献   

14.
Intelligent Handoff for Mobile Wireless Internet   总被引:6,自引:0,他引:6  
This paper presents an intelligent mobility management scheme for Mobile Wireless InterNet – MWIN. MWIN is a wireless service networks wherein its core network consisting of Internet routers and its access network can be built from any Internet-capable radio network. Two major standards are currently available for MWIN, i.e., the mobile IP and wireless LAN. Mobile IP solves address mobility problem with the Internet protocol while wireless LAN provides a wireless Internet access in the local area. However, both schemes solve problems independently at different layers, thereby some additional problems occur, e.g., delayed handoff, packet loss, and inefficient routing. This paper identifies these new problems and performs analyses and some real measurements on the handoff within MWIN. Then, a new handoff architecture that extends the features of both mobile IP and wireless LAN handoff mechanism was proposed. This new architecture consists of mobile IP extensions and a modified wireless LAN handoff algorithm. The effect of this enhancement provides a linkage between different layers for preventing packet loss and reducing handoff latency. Finally, some optimization issues regarding network planning and routing are addressed.  相似文献   

15.
Mobility management for VoIP service: Mobile IP vs. SIP   总被引:4,自引:0,他引:4  
Wireless Internet access has gained significant attention as wireless/mobile communications and networking become widespread. The voice over IP service is likely to play a key role in the convergence of IP-based Internet and mobile cellular networks. We explore different mobility management schemes from the perspective of VoIP services, with a focus on Mobile IP and session initiation protocol. After illustrating the signaling message flows in these two protocols for diverse cases of mobility management, we propose a shadow registration concept to reduce the interdomain handoff (macro-mobility) delay in the VoIP service in mobile environments. We also analytically compute and compare the delay and disruption time for exchanging signaling messages associated with the Mobile IP and SIP-based solutions.  相似文献   

16.
未来网络的发展趋势是各种无线接入网络共存的异构网络环境,而垂直切换技术是融合多个异构接入网络的关键技术之一,垂直切换包括三个阶段,即系统发现、切换决策和切换执行。文中主要研究了基于上下文感知的垂直切换判决策略,并与移动垂直切换技术相结合,实现了WLAN/UMTS网络间的垂直切换,通过仿真表明该方法在吞吐量和切换时延方面都得到改善。  相似文献   

17.
MarconiNet: overlay mobile content distribution network   总被引:1,自引:0,他引:1  
  相似文献   

18.
Providing quality of service in always best connected networks   总被引:4,自引:0,他引:4  
The next generation of mobile systems is expected to support multiple radio access technologies, as well as diverse types of terminals, including mobile phones, personal digital assistants, and laptops, as well as personal area, moving, and sensor networks. Thus, future wireless systems will not only continue to break technological barriers in terms of new air interface capabilities, higher bit rates, mobility, security, and QoS management, but will present new end-to-end scenarios in which applications access services over multiple L2 hops and multiple IP networks. The term always best connected refers to the concept of defining a set of access selection criteria and mechanisms that allow users to get connected to various services in a nearly optimal manner. Providing QoS in this type of heterogeneous multihop environment is a challenging task because applications may be completely unaware of them scenario and the underlying layer 2 technologies that can be quite different at different hops. For instance, some wireless links may have scarce resources and highly optimized QoS mechanisms; others may not support explicit QoS handling at all. In this article we consider the use of IP-level QoS signaling as a key component to support the end-to-end QoS for various applications. We propose a small set of application programmer- and wirelesslink-friendly IP QoS parameters (wireless hints) and illustrate the use of these in a specific WLAN-to-cellular handover situation. We conclude that the proposed model, signaling protocol, and wireless information elements can efficiently support QoS in heterogeneous mobile environments.  相似文献   

19.
为了提高异构无线网络的频谱利用率,将认知无线电中合作动态频谱分配(DSA)的思想应用于以基站和用户为基本单元的异构无线网络,将多模终端用户垂直切换的思想引入基站侧,提出了异构无线网络中的共享载波垂直网络转换(SCVNT)算法。理论分析与仿真实验表明,SCVNT算法可有效提高异构无线网络的总体信道利用率,改善资源分配的公平性,并可实现平滑升级,具有较高的应用价值。  相似文献   

20.
A key word describing next generation wireless networks is ‘seamless’. Wireless fourth generation (4G) networks represent a set of new technologies that will enable seamless integration of various wireless access systems, while targeting to support various sophisticated and quality of service constraining applications, such as high‐speed data services and multimedia services. This paper first proposes an architecture for 4G networks. The most significant feature of this architecture is its flexibility, openness and ability to enable seamless handoff in a single logical overlay network composed of many heterogeneous access networks. A medium access control (MAC) protocol for basic access networks is then introduced. A generic scheduling scheme, named CS‐EDF (channel state‐earliest deadline first) and the details of an efficient handoff management method are also briefly introduced. The bandwidth utilization, handoff resources reservation, and scheduling scheme performances of the proposed schemes are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号