首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《Journal of Catalysis》2007,245(2):401-414
The catalytic oxidation of methane was studied over Pd/Al2O3 and Pd–Pt/Al2O3. It was found that the activity of Pd/Al2O3 gradually decreases with time at temperatures well below that of PdO decomposition. The opposite was observed for Pd–Pt/Al2O3, of which the activity decreases slightly with time. Morphological studies of the two catalysts showed major changes during operation. The palladium particles in Pd/Al2O3 are initially composed of smaller, randomly oriented crystals of both PdO and Pd. In oxidising atmospheres, the crystals become more oxidised and form larger crystals. The activity increase of Pd–Pt/Al2O3 is probably related to more PdO being formed during operation. The particles in Pd–Pt/Al2O3 are split into two different domains: one with PdO and the other likely consisting of an alloy between Pd and Pt. The alloy is initially rich in palladium, but the composition changes to a more equalmolar Pd–Pt structure during operation. The ejected Pd is oxidised into PdO, which is more active than its metallic phase. The amount of PdO formed depends on the oxidation time and temperature.  相似文献   

2.
The effect of CeO2 loading on the surface properties and catalytic behaviors of CeO2–Al2O3-supported Pd catalysts was studied in the process of steam reforming of methane. The catalysts were characterized by SBET, X-ray diffraction (XRD), temperature-programmed reduction (TPR), UV–vis diffuse reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR). The XRD measurements indicated that palladium particles on the surface of fresh and reduced catalysts are well dispersed. TPR experiments revealed a heterogeneous distribution of PdO species over CeO2–Al2O3 supports; one fraction of large particles, reducible at room temperature, another fraction interacting with CeO2 and Al2O3, reducible at higher temperatures of 347 and 423 K, respectively. The PdO species reducible at room temperature showed lower CO adsorption relative to the PdO species reducible at high temperature. In contrast to Pd/Al2O3, the FTIR results revealed that CeO2-containing catalyst with CeO2 loading ≥12 wt.% show lower ratio (LF/HF) between the intensity of the CO bands in the bridging mode at low frequency (LF) and the linear mode at high frequency (HF). This ratio was constant with increasing the temperature of reduction. The FTIR spectra and the measurement of Pd dispersion suggested that Pd surface becomes partially covered with ceria at all temperature of reduction and with increasing ceria loading in Pd/CeO2–Al2O3 catalysts. Although the PdO/Al2O3 showed higher Pd dispersion compared to that of CeO2-containing catalysts, the addition of ceria resulted in an increase of the turnover rate and specific rate to steam reforming of methane. The CH4 turnover rate of Pd/CeO2–Al2O3 catalysts with ceria loading ≥12 wt.% was around four orders of magnitude higher compared to that of Pd/Al2O3 catalyst. The increase of the activity of the catalysts was attributed to various effects of CeO2 such as: (i) change of superficial Pd structure with blocking of Pd sites; (ii) the jumping of oxygen (O*) from ceria to Pd surface, which can decrease the carbon formation on Pd surface. Considering that these effects of CeO2 are opposite to changes of the reaction rate, the increase of specific reaction rate with enhancing the ceria loading suggests that net effect results in the increase of the accessibility of CH4 to metal active sites.  相似文献   

3.
The methane oxidation reaction is known to induce changes in the surface structure and composition of Pd catalysts; making it extremely arduous to relate the methane oxidation activity to specific catalyst properties by conventional methods (continuous flow reactor studies). To circumvent this, methodical pulse reactor studies have been undertaken to obtain correlations between the initial methane combustion activity and the catalyst properties (Pd0/PdO content and path of PdO formation). While the initial methane combustion activity (at 160–280 °C) continuously increased with increasing PdO concentration (0–100%) in the catalyst, it continuously decreased with increasing Pd0 content (0–100%). Controlled studies were undertaken to obtain catalysts with identical PdO content by two pathways: (i) by controlled partial oxidization of Pd0/Al2O3 and (ii) by controlled partial reduction of PdO/Al2O3. Interestingly, for a given PdO content, the catalysts obtained by partial oxidation of Pd0/Al2O3 showed a significantly superior performance to the catalyst obtained by partial reduction of PdO/Al2O3 for all the temperatures investigated. These studies unambiguously show that along with the relative concentration of PdO, the PdO formation pathway is also critical in deciding the methane combustion activity of the catalyst.  相似文献   

4.
《Catalysis communications》2009,10(15):2583-2587
This work focuses on the improving of the activities and stabilities of Pd/Al2O3 catalysts for lean methane catalytic combustion. The influence of preparation conditions on performance of Pd/Al2O3 catalyst has been studied. Results showed that excellent performance of the catalyst was attributed to high hydrothermal stability at the support calcination temperature of 1100 °C. In addition, the catalytic activity was enhanced due to high dispersion of active species at lower catalyst calcination temperature. The catalysts were studied by XPS analysis. Results showed that the active phase of Pd/Al2O3 was Pd or Pd/PdO mixture. And the state transformation of Pd species resulted in the deactivation of Pd/Al2O3.  相似文献   

5.
A synergetic effect in the methane oxidation activity of palladium and manganese hexaaluminate was studied over Pd-modified manganese-hexaaluminate catalysts, prepared by incipient wetness impregnation and calcined at 1,200?°C. The magnitude of the synergetic effect is found to be depends on the palladium precursor: it is higher for palladium nitrate and palladium acetate than for tetrachloropalladic acid. The Pd/MnLaAl11O19 catalysts were characterized by X-ray diffraction, X-ray microanalysis, transmission electron microscope and temperature-programmed reduction with hydrogen. These data were compared with the properties of Pd/Al2O3 catalysts. At variation of Pd-precursors, a minor trend to the decrease of the Pd particle size was observed at transition from the ex-chloride Pd/MnLaAl11O19 catalyst with uniform Pd-distribution profile to the ex-nitrate and ex-acetate catalysts with egg-shell Pd-distribution. Slightly smaller size of metal palladium particles in the ex-nitrate and ex-acetate catalysts leads to the formation of larger amount of PdO dispersed on their surface during oxygen-pretreatment in H2-TPR experiments (Pd/PdO atomic ratio was 1/4) and under methane-oxidation mixture in comparison with ex-chloride catalysts (Pd/PdO?=?4/1). The palladium addition to manganese-hexaaluminate changes strongly its redox properties, as result Mn3+ reduction to Mn2+ take place about 100?°C below that of pure hexaalunimate. The latter indicate probably on the higher oxygen mobility in Pd-modified manganese-hexaaluminate. A higher PdO/Pd ratio formed in the ex-nitrate and ex-acetate Pd-modified manganese-hexaaluminate catalysts together with the high oxygen mobility provide the synergetic effect in methane oxidation activity at light-off temperature region. The high catalytic activity of manganese-hexaaluminate ensures methane combustion efficiency of the Pd-modified manganese-hexaaluminate catalysts at temperature above 700?°C.  相似文献   

6.
Promotional effect of Ca on the catalytic property of Pd/Ce–Zr/Al2O3 catalyst towards methane combustion is examined. The surface properties and the oxidation/reduction behavior of these catalysts are investigated by BET, TEM, XPS, TPR, TPO and TPSR techniques. Activity tests in methane combustion show that addition of Ca to Pd/Ce–Zr/Al2O3 can promote remarkably its low-temperature activity. The thermal stability of the Pd/Ce–Zr/Al2O3 catalyst to the exposure at high temperature is also enhanced by Ca loading. XPS and TEM results show that the addition of Ca to Pd/Ce–Zr/Al2O3 catalyst generates well-dispersed PdO particles on support. H2–TPR, O2–TPO and CH4/O2–TPSR experiments show that the addition of Ca improves the reduction/reoxidation properties and thermal stability of the active PdO species, which increases the catalytic activity and thermal stability of the Pd/Ce–Zr/Al2O3 catalyst.  相似文献   

7.
This paper presents results which were obtained for the flameless combustion of methane over the Pd(PdO)/Al2O3 catalyst by using the steady state isotopic transient kinetic analysis method. During the reaction switches between 16O2/Ar/CH4/He and 18O2/CH4/He were carried out. The obtained results indicate the presence of large amounts of oxygen as well as of intermediates leading to the formation of carbon dioxide on the surface of the palladium catalyst. Additionally, information was obtained proving that the complete oxidation of methane over Pd/Al2O3 catalyst proceeds according to the Mars and van Krevelen redox mechanism. With the increase of the reaction temperature there is an increase in the number of active centres on the Pd(PdO)/Al2O3 catalyst surface—a larger amount of oxygen from the lattice of the catalyst is accessible for the reaction of methane oxidation.  相似文献   

8.
The deposition of Ni, Co, Ce or Fe oxides onto the washcoat surface in the 0.5%Pd/Al2O3 catalyst enhances conversion of CH4. Catalytic activity of the Pd-catalysts containing cobalt oxide depends on the incorporated amount of cobalt oxide and the method of incorporation. The highest activities were those of the 0.5%Pd/0.3%Co/Al2O3 and 1%Pd/0.3%Co/Al2O3 catalysts (cobalt oxide deposited onto the surface of Al2O3) and the 0.5%Pd/5%Co3O4–Al2O3 catalyst (mixed washcoat). Total SSA, Pd dispersion and Pd crystallite size in the x%Pd/y%Co/Al2O3 catalysts depend on the incorporated amount of PdO and cobalt oxide. Pd dispersion in the 1%Pd/Al2O3 catalyst increases from 4% to 20% upon deposition of 14 wt.% Co3O4 (by mass Al2O3) onto the Al2O3 surface (1%Pd/0.3%Co/Al2O3). This increase in Pd dispersion influence the increase in the activity of the 1%Pd/Al2O3 catalyst. On the surface of the 0.5%Pd/5%Co3O4–Al2O3 catalyst Pd occurs mainly in the form of PdO and displays considerable mobility under conditions of temperature variations—cyclically undergoing reduction and oxidation. At 500 °C, in vacuo, the reduction was irreversible and parallelled by the agglomeration of metallic Pd crystallites. At room temperature, cobalt occurred on the catalyst surface in the form of Co+2 ions (CoAl2O4) and was reduced to Co0 at 500 °C (in vacuo). Up to 500 °C, the reduction of Co was reversible.  相似文献   

9.
An as-synthesized 8.8wt% Pd/ZnO/Al2O3 catalyst was either pretreated under O2 at 773 K followed by H2 at 293 K or under H2 at 773 K to obtain, respectively, a supported metallic Pd° catalyst (Pd°/ZnO/Al2O3) or a supported PdZn alloy catalyst (PdZn/ZnO/Al2O3). Both catalysts were studied by CO adsorption using FTIR spectroscopy. For the supported PdZn alloy catalyst (PdZn/ZnO/Al2O3), exposure to a mixture of methanol and steam, simulating methanol steam reforming reaction conditions, does not change the catalyst surface composition. This implies that the active sites are PdZn alloy like structures. The exposure of the catalyst to an oxidizing environment (O2 at 623 K) results in the break up of PdZn alloy, forming a readily reducible PdO with its metallic form being known as much less active and selective for methanol steam reforming. However, for the metallic Pd°/ZnO/Al2O3 catalyst, FTIR results indicate that metallic Pd° can transform to PdZn alloy under methanol steam reforming conditions. These results suggest that PdZn alloy, even after an accidental exposure to oxygen, can self repair to form the active PdZn alloy phase under methanol steam reforming conditions. Catalytic behavior of the PdZn/ZnO/Al2O3 catalyst also correlates well with the surface composition characterizations by FTIR/CO spectroscopy.  相似文献   

10.
Roth  D.  Gelin  P.  Tena  E.  Primet  M. 《Topics in Catalysis》2001,16(1-4):77-82
Pd and Pt catalysts supported on alumina, tin(IV) oxide and tin(IV) oxide grafted on alumina were prepared, characterised and tested with respect to the low-temperature combustion of methane after reduction in H2 and ageing under reactants at 600°C. In the case of Pd, the use of SnO2 or SnO2-based supports led to catalysts slightly less active than Pd/Al2O3. In contrast, SnO2 was found to strongly promote the oxidation of methane over Pt catalysts with respect to Pt/Al2O3, even after ageing under reactants. When Pt was supported on SnO2 grafted on Al2O3, the activity was found at most similar to or, after ageing, lower than Pt/Al2O3. This negative effect was discussed, being partly related to the sintering of SnO2 under reactants observed by FTIR and XRD.  相似文献   

11.
The effect of noble metal addition on the catalytic properties of Co/Al2O3 was evaluated for the steam reforming of methane. Co/Al2O3 catalysts were prepared with addition of different noble metals (Pt, Pd, Ru and Ir 0.3 wt.%) by a wetness impregnation method and characterized by UV–vis spectroscopy, temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) of the reduced catalysts. The UV–vis spectra of the samples indicate that, most likely, large amounts of the supported cobalt form Co species in which cobalt is in octahedral and tetrahedral symmetries. No peaks assigned to cobalt species from aluminate were found for the promoted and unpromoted cobalt catalysts. TPO analyses showed that the addition of the noble metals on the Co/Al2O3 catalyst leads to a more stable metallic state and less susceptible to the deactivation process during the reforming reaction. The Co/Al2O3 promoted with Pt showed higher stability and selectivity for H2production during the methane steam reforming.  相似文献   

12.
Lapisardi  G.  Gélin  P.  Kaddouri  A.  Garbowski  E.  Da Costa  S. 《Topics in Catalysis》2007,42(1-4):461-464
Bimetallic Pd–Pt catalysts with constant 2 wt% metal loading and varying Pt/Pd ratios were prepared, characterized and studied in the catalytic combustion of methane at low temperature under lean conditions in view of their use for CH4 abatement from lean-burn NGV heavy duty vehicles exhausts. The influence of mild steam ageing featuring long-term use of the catalysts was also addressed together with their tolerance to H2S. Catalysts were characterised by Transmission Electron Microscopy and Temperature Programmed Oxidation experiments. Experimental data agreed to suggest an interaction between Pd and Pt in Pd-rich catalysts, thus explaining their improved catalytic activity, even after mild ageing, compared to reference Pd/Al2O3. This interaction has no effect on the sulfur tolerance.  相似文献   

13.
Catalytic combustion of volatile organic compounds (VOCs) was investigated on supported precious metal catalysts. The activities for the combustion of methane and acetaldehyde were closely related to the reducibility of the precious metal oxides of the catalysts. On the other hand, light-off temperatures for toluene combustion on PdO/Al2O3, PdO/SnO2, and PdO/CeO2 were around 200 °C, although PdO/ZrO2 showed a higher temperature of 240 °C. This result indicated that light-off temperatures depend on not only the catalytic activities but also the catalyst structure because of low concentration of toluene and weak interaction between catalysts and toluene. In this experiment, the PdO/SnO2 catalyst showed highest activity for the combustion of methane and VOCs.  相似文献   

14.
Arosio  F.  Colussi  S.  Groppi  G.  Trovarelli  A. 《Topics in Catalysis》2007,42(1-4):405-408
This work investigates the regeneration of S-poisoned Pd/Al2O3 and Pd/CeO2/Al2O3 catalysts under different CH4 containing atmospheres. Under lean combustion conditions in the presence of excess O2, partial regeneration took place for both systems only above 750 °C after decomposition of stable sulphate species adsorbed on the support. Under alternate lean combustion/CH4-reducing pulse regeneration is markedly anticipated down to 550–600 °C. Experiments evidenced an effective role of ceria in preventing PdO from sulphation and in promoting regeneration via sulphates decomposition under reducing conditions.  相似文献   

15.
Palladium catalysts supported on CeO2, Ce0.75Zr0.25O2, ZrO2, TiO2, Nb2O5, Al2O3 were studied on the total oxidation of butyl carbitol. Several techniques were used to characterize the samples such as diffuse reflectance spectroscopy (DRS), temperature programmed reduction (TPR), cyclohexane dehydrogenation and CO temperature programmed desorption (TPD). DRS and TPR results revealed the presence of bulk PdO and PdO with strong interaction with the support. The catalytic tests showed the following order for decreasing activity: Pd/Ce0.75Zr0.25O2 > Pd/CeO2 > Pd/TiO2 > Pd/Nb2O5 > Pd/Al2O3 > Pd/ZrO2. However, when the turnover frequency (TOF) was calculated, all the samples had similar values.  相似文献   

16.
Hydrogen production by partial oxidation and steam reforming (POSR) of n‐octane was investigated over alumina‐supported Ni and Ni‐Pd catalysts. It showed that Ni‐Pd/Al2O3 had higher activity and hydrogen selectivity than the nickel catalyst under the experimental conditions, which indicated Ni‐Pd/Al2O3 could be an effective catalyst for the production of hydrogen from hydrocarbons.  相似文献   

17.
Temperature-programmed desorption (TPD) and oxidation (TPO) were used to investigate the decomposition and oxidation of ethanol on Al2O3, Pd/Al2O3, and PdO/Al2O3. Ethyl--13C alcohol (CH3 13CH2OH) was adsorbed on the catalysts so that reaction pathways of the two carbons could be distinguished. Alumina was mainly a dehydration catalyst, but dehydrogenation was also observed and some carbon remained on the surface. In the presence of O2, A12O3 oxidized the decomposition products and the-carbon was oxidized faster. Ethanol, which was adsorbed on A12O3, decomposed much faster on Pd/A12O3 by diffusing to Pd and undergoing CO elimination to form CH4,13CO, H2, and surface carbon. On PdO/A12O3, the decomposition was slower than on Pd/A12O3 until lattice oxygen was extracted above 450 K; the decomposition products were oxidized by lattice oxygen. In the presence of gas phase O2, Pd/Al2O3 was an active oxidation catalyst at low temperature, but lattice oxygen had to be extracted from PdO/A12O3 before it had significant oxidation activity.  相似文献   

18.
《Fuel》2007,86(1-2):106-112
A series of Pd/HZSM-5 (Si/Al2 = 165) catalysts without and with additives of oxides of La, Ce, Sm, Nd and Tb were prepared by the impregnation method, and characterized by XRD, Raman spectra, N2-adsorption, CO-chemisorption, O2-TPD and CH4-TPR techniques. The catalysts were investigated for low-temperature CH4 combustion, and CeO2 was found to have a significant promoting effect on the activity of Pd/HZSM-5. Pd–Ce/HZSM-5 showed the best methane combustion activity and the improved thermal/hydrothermal reaction stability among tested catalysts. The characterization results of catalysts indicated that CeO2 can effectively promote the formation of crystalline PdO and weaken the bond strength of Pd–O on Pd–Ce/HZSM-5, resulting in that Pd–Ce/HZSM-5 possessed lower temperatures for oxygen desorption and CH4 reduction than Pd/HZSM-5. This could be ascribed to the covalent property and large oxygen storage/supplying capacity of CeO2. It is believed that more active PdO species on Pd/HZSM-5 for low-temperature methane combustion process could be effectively promoted due to the introduction of CeO2.  相似文献   

19.
The effects of additives, CeO2 and K2O, on Pd Al2O3 for CO and C3H6 oxidation under oxygen-deficient conditions were investigated. The unpromoted Pd Al2O3 exhibits the highest C3H6 conversion among the Pd catalysts, but its CO conversion is very low and even negative at the higher temperature . Nevertheless, the CO conversion on Pd Al2O3 can be significantly promoted by the addition of CeO2 and K2O. When water participates in the reaction, the CO conversions on the promoted Pd Al2O3 catalysts can be further increased. The promotional extent of CO conversion on the Pd catalysts is in the order: Pd-K2O- - - . Moreover, Pd-K2O-CeO2 Al2O3 exhibits the highest CO conversion among the Pd catalysts. In addition, the test results of the monolithic catalysts also reveal that the CO conversion on PdRh K2O Al2O3-CeO2 is quite close to that on PtRh Al2O3-CeO2 under the simulative gases and the ECE-40 mode driving cycle test. However, PdRh K2O Al2O3-CeO2 exhibits lower HC conversion due to the lower activity for alkane oxidation.  相似文献   

20.
Catalysts consisting of palladium supported on cerium dioxide (Pd/CeO2) were prepared and used for carbon monoxide oxidation in a stoichiometric mixture of carbon monoxide and oxygen. Pd/CeO2 exhibits high catalytic activity for the oxidation of CO, showing markedly enhanced catalytic activities due to the combined effect of palladium and cerium dioxide. The Pd/CeO2 catalyst is superior to Pd/ZrO2, Pd/Al2O3, Pd/TiO2, Pd/ZSM-5 and Pd/SiO2 catalysts with regard to the activity under the conditions examined. The catalysts were characterized by means of XRD and TPR. The position of the H2-TPR peak shifts to lower temperature with increasing Pd loading from 0.25 to 2.0%. CeO2 inhibits the hydrogen reduction of PdO. CO-TPR measurements have shown the existence of three peaks. The low-temperature peak (α) is due to the Pd hydroxide species. The β peak has been attributed to finely dispersed PdO. The high-temperature peak (γ) has been attributed to crystal phase PdO. Crystal phase PdO is more difficult to reduce by CO than finely dispersed PdO. On the basis of the catalytic activity and CO-TPR results, we conclude α species (Pd hydroxide) mainly contribute to the catalytic activity for low-temperature CO oxidation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号