首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
Bone mobilization, lowering of bone mineral density (BMD), and osteoporotic fractures are recognized in postmenopausal women with weight loss. Because a high-calcium intake suppresses bone loss in peri- and postmenopausal women, the present randomized, double-blind, placebo-controlled study was designed to test the hypothesis that calcium supplementation prevents net bone mobilization and consequent bone mineral loss during voluntary weight reduction in obese postmenopausal women. Subjects were placed on a moderate energy-restricted diet and either calcium supplementation (1 g/day) or placebo for 6 months. Body weight, bone turnover markers (pyridinium cross-links), osteocalcin, and parathyroid hormone (PTH) were measured at treatment weeks 1-5, 7, 10, 13, 16, 20, and 25. Total body BMD, insulin-like growth factor, 25-hydroxyvitamin D, and sex hormone binding globulin (SHBG) were measured at baseline and week 25. The calcium supplemented (n = 15; age 60.9 +/- 9.4 years, body mass index [BMI] 33.2 +/- 4.6 kg/m2) and placebo (n = 16; age 55.8 +/- 8.3 years, BMI 32.9 +/- 4.5 kg/m2) groups lost similar amounts of weight over the study interval (10.2 +/- 5.3% vs. 10.0 +/- 5.2%) and both groups increased SHBG (p < 0.001). There was a statistical effect of calcium supplementation during weight loss to suppress pyridinium cross-links, osteocalcin, and PTH (p < 0.05, < 0.01, and < 0.05, respectively). Loss of BMD tended to be greater in the placebo group by 1.4% (p < 0.08) after weight loss. One gram per day calcium supplementation normalizes the increased calcium-PTH axis activity and the elevated bone turnover rate observed during moderate voluntary energy restriction in postmenopausal women.  相似文献   

2.
Recent animal work suggests that gamma-linolenic acid (GLA) and eicosapentaenoic acid (EPA) enhance calcium absorption, reduce excretion and increase calcium deposition in bone. A pilot study was set up to test the interactions between calcium and GLA + EPA in humans. Sixty-five women (mean age 79.5), taking a background diet low in calcium, were randomly assigned to GLA + EPA or coconut oil placebo capsules; in addition, all received 600 mg/day calcium as the carbonate. Markers of bone formation/degradation and bone mineral density (BMD) were measured at baseline, 6, 12 and 18 months. Twenty-one patients were continued on treatment for a second period of 18 months, after which BMD (36 months) was measured. At 18 months, osteocalcin and deoxypyridinoline levels fell significantly in both groups, indicating a decrease in bone turnover, whereas bone specific alkaline phosphatase rose indicating beneficial effects of calcium given to all the patients. Lumbar and femoral BMD, in contrast, showed different effects in the two groups. Over the first 18 months, lumbar spine density remained the same in the treatment group, but decreased 3.2% in the placebo group. Femoral bone density increased 1.3% in the treatment group, but decreased 2.1% in the placebo group. During the second period of 18 months with all patients now on active treatment, lumbar spine density increased 3.1% in patients who remained on active treatment, and 2.3% in patients who switched from placebo to active treatment; femoral BMD in the latter group showed an increase of 4.7%. This pilot controlled study suggests that GLA and EPA have beneficial effects on bone in this group of elderly patients, and that they are safe to administer for prolonged periods of time.  相似文献   

3.
It is known that GH stimulates bone turnover and that GH-deficient adults have a lower bone mass than healthy controls. In order to evaluate the influences of GH replacement therapy on markers of bone turnover and on bone mineral density (BMD) in patients with adult onset GH deficiency, a double-blind placebo-controlled study of treatment with recombinant human GH (rhGH; mean dose 2.4 IU daily) in 20 patients for 6 months and an extended open study of 6 to 12 months were conducted. Eighteen patients, fourteen men and four women, with a mean age of 44 years with adult onset GH deficiency were evaluated in the study. Compared with placebo, after 6 months serum calcium (2.39 +/- 0.02 vs 2.32 +/- 0.02 mmol/l, P = 0.037) and phosphate (0.97 +/- 0.06 vs 0.75 +/- 0.05 mmol/l, P = 0.011) increased and the index of phosphate excretion (0.03 +/- 0.03 vs 0.19 +/- 0.02, P < 0.001) decreased significantly, and there was a significant increase in the markers of bone formation (osteocalcin, 64.8 +/- 11.8 vs 17.4 +/- 1.8 ng/ml, P < 0.001; procollagen type I carboxyterminal propeptide (PICP), 195.3 +/- 26.4 vs 124.0 +/- 15.5 ng/ml, P = 0.026) as well as those of bone resorption (type I collagen carboxyterminal telopeptide (ICTP), 8.9 +/- 1.2 vs 3.3 +/- 0.5 ng/ml, P < 0.001; urinary hydroxyproline, 0.035 +/- 0.006 vs 0.018 +/- 0.002 mg/100 ml glomerular filtration rate, P = 0.009). BMD did not change during this period of time. IGF-I was significantly higher in treated patients (306 +/- 45.3 vs 88.7 +/- 22.5 ng/ml, P < 0.001). An analysis of the data compiled from 18 patients treated with rhGH for 12 months revealed similar significant increases in serum calcium and phosphate, and the markers of bone turnover (osteocalcin, PICP, ICTP, urinary hydroxyproline). Dual energy x-ray absorptiometry (DXA)-measured BMD in the lumbar spine (1.194 +/- 0.058 vs 1.133 +/- 0.046 g/cm2, P = 0.015), femoral neck (1.009 +/- 0.051 vs 0.936 +/- 0.034 g/cm2, P = 0.004), Ward's triangle (0.881 +/- 0.055 vs 0.816 +/- 0.04 g/cm2, P = 0.019) and the trochanteric region (0.869 +/- 0.046 vs 0.801 +/- 0.033 g/cm2, P = 0.005) increased significantly linearly (compared with the individual baseline values). At 12 months, BMD in patients with low bone mass (T-score < -1.0 S.D.) increased more than in those with normal bone mass (lumbar spine 11.5 vs 2.1%, P = 0.030, and femoral neck 9.7 vs 4.2%, P = 0.055). IGF-I increased significantly in all treated patients. In conclusion, treatment of GH-deficient adults with rhGH increases bone turnover for at least 12 months. BMD in the lumbar spine and the proximal femur increases continuously in this time (open study) and the benefit is greater in patients with low bone mass. Therefore, GH-deficient patients exhibiting osteopenia or osteoporosis should be considered candidates for GH supplementation. However, long-term studies are needed to establish that the positive effects on BMD are persistent and are associated with a reduction in fracture risk.  相似文献   

4.
BACKGROUND: A double blind, placebo controlled study was undertaken to determine the effects of 104 weeks of intermittent cyclical etidronate therapy on bone mineral density (BMD) in patients undergoing long-term oral corticosteroid therapy. METHODS: Forty nine patients of mean age 59 years on long-term (> 6 months) corticosteroid treatment were randomised to receive either 400 mg/day etidronate or placebo for 14 days followed in both groups by calcium (equivalent to 97 mg elemental Ca/day) with vitamin D (400 IU) for 76 days. The cycle was repeated a total of eight times over a period of two years. Dual energy x ray absorptiometry (DEXA) measurements of the lumbar spine and hip BMD and biochemical bone marker analyses were performed at baseline and every six months. RESULTS: Twenty six patients (10 men) received cyclical etidronate and 23 (nine men) received placebo. The mean (SD) dose of corticosteroid (prednisone or equivalent) at baseline in the etidronate group was 8 (4) mg/day and in the placebo group was 7 (4) mg/day. Most of the patients (43%) suffered from asthma. Forty one patients completed the study (22 in the etidronate group and 19 in the placebo group). All had a low BMD at entry and with treatment a significant difference was observed between groups in the mean (SE) percentage change from baseline in lumbar spine BMD at week 104 of 4.5 (1.65)% (p = 0.007) with a 95% confidence interval (CI) of 1.12 to 7.87%. No clinically or statistically significant treatment differences were observed at the hip or with bone markers. The incidence of adverse events was similar in the two groups. CONCLUSIONS: The results show that intermittent cyclical etidronate therapy with calcium and vitamin D supplementation significantly increases lumbar spine BMD in patients with osteoporosis resulting from long-term treatment with corticosteroids.  相似文献   

5.
The present article describes the results from a phase II dose finding study of the effect of ibandronate, a new, third generation bisphosphonate, in postmenopausal osteoporosis. One hundred and eighty postmenopausal, white women, at least 10 years past a natural menopause, with osteopenia defined as a bone mineral density (BMD) in the distal forearm at least 1.5 SD below the premenopausal mean, entered and 141 (78%) completed a 12 months randomized, double-blind, placebo-controlled study. The women received 0.25, 0.5, 1.0, 2.5, or 5.0 mg ibandronate daily or placebo. All women received a daily calcium supplementation of 1000 mg Ca2+. Bone mass and biochemical markers of bone turnover were measured every 3 months throughout the study period. The average changes in bone mass showed positive outcome in all regions in the groups receiving ibandronate 2.5 and 5.0 mg. The responses in the two groups were not significantly different, although there was a tendency toward a higher response in bone mass in the group receiving ibandronate 2.5 mg, where the increase in BMD was 4.6 +/- 3.1% (SD) in the spine (p < 0.001), 1.3 +/- 3.0% (SD) to 3.5 +/- 5.3% (SD) in the different regions of the proximal femur (p < 0.03 to p < 0.002), and 2.0 +/- 1.9% (SD) in total body bone mineral content (BMC) (p < 0.001). There was no significant changes in bone mass in the group receiving calcium (placebo) and ibandronate 0.25 mg. Dose-related responses were found in all biochemical markers of bone turnover. In average, serum osteocalcin decreased 13 +/- 14% (SD) (placebo) and 35 +/- 14% (SD) (5.0 mg). Urinary excretions of breakdown products of type I collagen decreased 35 +/- 21% (SD) (placebo) and 78 +/- 28% (SD) (5.0 mg), p < 0.001 in all groups. In conclusion, the results suggest that ibandronate treatment increases bone mass in all skeletal regions in a dose dependent manner with 2.5 mg being the most effective dose. Ibandronate treatment reduces bone turnover to premenopausal levels and is well tolerated.  相似文献   

6.
Although the antiresorptive agent alendronate has been shown to increase bone mineral density (BMD) at the hip and spine and decrease the incidence of osteoporotic fractures in older women, few data are available regarding early prediction of long-term response to therapy, particularly with regard to increases in hip BMD. Examining short-term changes in biochemical markers incorporates physiologic response with therapeutic compliance and should provide useful prognostic information for patients. The objective of this study was to examine whether early changes in biochemical markers of bone turnover predict long-term changes in hip BMD in elderly women. The study was a double-blind, placebo-controlled, randomized clinical trial which took place in a community-based academic hospital. One hundred and twenty community-dwelling, ambulatory women 65 years of age and older participated in the study. Intervention consisted of alendronate versus placebo for 2.5 years. All patients received appropriate calcium and vitamin D supplementation. The principal outcome measures included BMD of the hip (total hip, femoral neck, trochanter, and intertrochanter), spine (posteroanterior [PA] and lateral), total body, and radius. Biochemical markers of bone resorption included urinary N-telopeptide cross-linked collagen type I and free deoxypyridinoline; markers of bone formation included serum osteocalcin and bone-specific alkaline phosphatase. Long-term alendronate therapy was associated with increased BMD at the total hip (4.0%), femoral neck (3.1%), trochanter (5.5%), intertrochanter (3.8%), PA spine (7.8%), lateral spine (10.6%), total body (2.2%), and one-third distal radius (1.3%) in elderly women (all p < 0.01). In the placebo group, bone density increased 1.9-2.1% at the spine (p < 0.05) and remained stable at all other sites. At 6 months, there were significant decreases in all markers of bone turnover (-10% to -53%, p < 0.01) in women on alendronate. The changes in urinary cross-linked collagen at 6 months correlated with long-term bone density changes at the hip (r = -0.35, p < 0.01), trochanter (r = -0.36, p < 0.01), PA spine (r = -0.41, p < 0.01), and total body (r = -0.34, p < 0.05). At 6 months, patients with the greatest drop in urinary cross-linked collagen (65% or more) demonstrated the greatest gains in total hip, trochanteric, and vertebral bone density (all p < 0.05). A 30% decrease in urinary cross-linked collagen at 6 months predicted a bone density increase of 2.8-4.1% for the hip regions and 5.8-6.9% for the spine views at the 2.5-year time point (p < 0.05). There were no substantive associations between changes in biochemical markers and bone density in the placebo group. Alendronate therapy was associated with significant long-term gains in BMD at all clinically relevant sites, including the hip, in elderly women. Moreover, these improvements were associated with early decreases in biochemical markers of bone turnover. Early dynamic decreases in urinary cross-linked collagen can be used to monitor and predict long-term response to bisphosphonate therapy in elderly women. Future studies are needed to determine if early assessment improves long-term patient compliance or uncovers poor compliance, thereby aiding the physician in maximizing the benefits of therapy.  相似文献   

7.
The aim of this prospective study was to evaluate the bone mineral density (BMD) at lumbar spine and femoral neck levels and biochemical parameters of bone turnover in 20 consecutive hyperprolactinemic males before and after an 18-month treatment with different dopamine agonists. Six patients received bromocriptine at a dose of 2.5-10 mg/day; 7 patients received quinagolide at a dose of 0.075-0.3 mg/day; 7 patients received cabergoline at a dose of 0.5-1.5 mg/week. BMD, serum PRL, testosterone, dihydrotestosterone, and osteocalcin (OC), and urinary cross-linked N-telopeptides of type I collagen (Ntx) levels were measured before and every 6 months during treatment. At study entry, BMD values were lower in patients than controls at both lumbar spine (0.82 +/- 0.03 vs. 1.18 +/- 0.01 g/cm2; P < 0.001) and femoral neck (0.85 +/- 0.02 vs. 0.92 +/- 0.02 g/cm2; P < 0.05) levels. Osteopenia or osteoporosis was diagnosed in 16 patients at the lumbar spine and in 6 of them at the femoral neck level. A significant inverse correlation was found between lumbar spine and femoral neck BMD values and both PRL levels and disease duration (P < 0.01). In the 20 patients, serum OC levels were significantly lower (2.1 +/- 0.1 vs. 9.3 +/- 2.4 microg/L; P < 0.01), whereas Ntx levels were significantly higher (157.8 +/- 1.1 vs. 96.4 +/- 7.4 nmol bone collagen equivalent/mmol creatinine; P < 0.001) than control values. A significant inverse correlation was found between serum PRL and OC (P < 0.01), but not Ntx, levels. After 18 months of treatment, serum PRL levels were suppressed, and gonadal function was restored in all 20 patients, as shown by the normalization of serum T (from 2.2 +/- 0.2 to 5.0 +/- 0.2 microg/L) and dihydrotestosterone (0.3 +/- 0.02 vs. 0.5 +/- 0.01 nmol/L) levels, without any significant difference among groups. A progressive significant increase in serum OC levels together with a significant decrease in Ntx levels were observed after 6, 12, and 18 months of treatment in the 3 groups of patients. A slight, although significant, increase in BMD values was recorded in all patients after 18 months of bromocriptine, quinagolide, and cabergoline treatment, serum OC levels were normalized after treatment, whereas neither urinary Ntx levels nor BMD values were normalized by 18 months of treatment with dopaminergic agents. In conclusion, treatment with bromocriptine, quinagolide, and cabergoline for 18 months, although successfull in suppressing serum PRL levels and restoring gonadal function, was unable to restore lumbar spine and femoral neck BMD and normalize Ntx levels. However, BMD was slightly increased during treatment, suggesting that additional bone loss was prevented after treatment of hyperprolactinemia.  相似文献   

8.
Cholesterol levels were measured in the cord blood of 30 pairs of monochorionic and 22 pairs of dichorionic monozygotic (MZ) twins. Cholesterol levels were found to be significantly higher in female twins when data was combined over chorion type. The type of chorionic development had no significant effect on variation among twin pairs. Chorion type did, however, have a significant effect on the within-pair variation. The variation within dichorionic pairs was more than five times that within monochorionic pairs (P less than .01). This result suggests that the variation in placentation has a significant effect on within-pair variation in serum cholesterol of newborn MZ twins.  相似文献   

9.
Calcium's ability to prevent bone loss in early postmenopausal women is controversial. We used data on 394 women from the placebo group of the Early Postmenopausal Interventional Cohort study, a clinical trial of alendronate, to investigate the relation of calcium intake to bone loss. Calcium intake was recorded, and bone mineral density (BMD) (in the lumbar spine, total body, forearm, and hip) and biochemical markers of bone turnover (serum total alkaline phosphatase, serum osteocalcin, and urinary N-telopeptide crosslink levels) were measured at baseline and annually thereafter. Women whose baseline calcium intake was <500 mg/d were advised to increase their calcium intake. Mean (+/- SE) BMD decreased by 1.9% +/- 0.16% at the lumbar spine and 1.6% +/- 0.14% at the hip over the 24-month period. Despite wide variations in baseline calcium intake and changes in calcium intake, these measures were not significantly associated with changes in BMD or bone turnover. Even women whose total calcium intake was >1333 mg/d (the highest tertile of total calcium intake) showed a decline in BMD of almost 2%, similar to declines in the lower two tertiles of total calcium intake (<869 and 869-1333 mg/d, respectively). Increased calcium intake resulted in modest mean increases of approximately 200 mg/d. We were unable to demonstrate that increases of this magnitude or much greater (1 g/d) were protective against declines in BMD at any site, even in women who had the lowest calcium intake at baseline. In addition to adequate calcium intake, more effective therapy appears to be required when the therapeutic goal is to increase or maintain BMD.  相似文献   

10.
BACKGROUND: It has been suggested that the vitamin D receptor (VDR) gene BsmI-polymorphism is a genetic determinant of bone metabolism. DESIGN: To test this hypothesis, the relationship between VDR genotypes, bone mineral density (baseline and after 18 months) and parameters of calcium metabolism and bone turnover were investigated prospectively in 88 haemodialysed patients not receiving active vitamin D metabolites. METHODS: Whole body, lumbar spine and femoral neck bone mineral density (BMD) were assessed by dual energy X-ray absorptiometry (DEXA). In addition calcium, phosphorus, 25(OH)D3, 1,25(OH)2D3, osteocalcin serum concentrations, alkaline phosphatase activity and intact 1,84 PTH levels were measured. RESULTS: VDR genotype BB, Bb and bb were found in 27, 49 and 24% of patients. Initial BMD (g/cm2) of whole body, lumbar spine and femoral neck did not differ between genotypes (whole body: BB 1.055 +/- 0.120, Bb 1.082 +/- 0.102, bb 1.128 +/- 0.120; lumbar spine: BB 1.075 +/- 0.199, Bb 1.079 +/- 0.185, bb 1.099 +/- 0.170; femoral neck: BB 0.808 +/- 0.160, Bb 0.862 +/- 0.127, bb 0.842 +/- 0.125; mean +/- SD), but the decrease of whole body and femoral neck BMD during 18 months was significantly (P < 0.02) different between the genotype groups (whole body: BB -0.048 +/- 0.028, Bb -0.031 +/- 0.029, bb -0.024 +/- 0.023; femoral neck BB -0.044 +/- 0.069, Bb -0.032 +/- 0.081, bb -0.012 +/- 0.029 g/cm2). CONCLUSION: This preliminary study suggests faster mineral loss in BB genotype of VDR in haemodialysed patients.  相似文献   

11.
OBJECTIVE: To determine the efficacy of sodium fluoride (40 mg/day) in preventing rheumatoid arthritis (RA) induced bone loss, which may lead to osteoporosis. METHODS: We conducted an 18 month, randomized, double blind, placebo controlled trial in 38 patients with RA. The primary outcome measure was the difference in the percentage change between groups in lumbar spine bone mineral density (BMD) from baseline values after 18 months of therapy. The secondary outcome measures were the differences in the percentage change between groups in femoral neck, Ward's triangle, trochanter, and total body BMD from baseline after 18 months of therapy. RESULTS: There was a significant percentage difference (SD) between groups of 6.2% (7.3%) (p = 0.0005) in lumbar spine BMD after 18 months of treatment in favor of the fluoride group. The fluoride group experienced a 5.2% (8.4%) (p = 0.0125) increase, whereas the placebo group showed a 1.0% (4.8%) (p = 0.8015) decrease in lumbar spine BMD after treatment. No significant differences were found for the femoral neck, Ward's triangle, trochanter, and total body BMD in terms of the percentage changes from baseline within each treatment group or in the differences in the degree of change between groups after therapy. Lumbar spine BMD increased in about 80% of patients treated with fluoride (responders) compared to 44% of patients treated with placebo. CONCLUSION: The results showed that fluoride therapy was well tolerated and increased vertebral bone mass in patients with RA.  相似文献   

12.
Manual performance, direction, and degree of laterality were tested in monozygotic (MZ) twins (8-12 years old) of known chorion type and dizygotic (DZ) twins. Three manual tasks rarely employed in twin studies were used; dot-filling, tapping, and peg-moving tasks. No chorion effect was observed: the monochorionic and dichorionic MZs differed neither for frequency of discordant pairs nor for handedness, laterality measurements, and manual performance. The pooled MZs and DZs were then compared in a classic twin design. The within-pair resemblance was not higher in MZs than in DZs for variables measuring level of manual performance. For laterality scores intraclass correlations were close to zero in MZ and DZ twin groups.  相似文献   

13.
We studied the biochemical effects of calcium supplementation during a 2-mo course in postmenopausal women (x +/- SD: 64 +/- 5 y of age and 14.5 +/- 6.7 y since menopause). The effects on calcium homeostasis and bone remodeling were assessed after 1 and 2 mo of daily administration of either calcium carbonate (1200 mg elemental Ca/d, n = 60) or a placebo (n = 56). The daily dietary calcium intake assessed before the beginning of calcium supplementation was 786 mg/d. We found a significant inverse relation between baseline intact parathyroid hormone (iPTH) and dietary calcium intake before supplementation (r = -0.48, P = 0.0002). A significant increase in urinary excretion of pyridinoline was observed when the dietary calcium intake was lower than the median value. Calcium supplementation resulted in a significant increase in 24-h urinary calcium (39%, P < 0.02) and a significant reduction of bone alkaline phosphatase at 2 mo and of all bone-resorption markers (hydroxyproline, pyridinoline, and deoxypyridinoline) at I and 2 mo without significant changes in 44-68 PTH fragments or iPTH concentrations. When the dietary calcium intake was low (mean +/- SD: 576 +/- 142 mg/d), calcium supplementation was responsible for a greater increase in urinary calcium excretion and a greater decrease in markers of bone turnover. The greatest variations were observed for deoxypyridinoline at 1 and 2 mo (-18.5%, P < 0.05) and for pyridinoline at 1 mo (-16.3%, P < 0.01). Two months of calcium supplementation in postmenopausal women was efficient in reducing markers of bone turnover, with a greater effect in women with a low dietary calcium intake.  相似文献   

14.
Calcium supplementation and bone mineral density in adolescent girls   总被引:1,自引:0,他引:1  
OBJECTIVE: To evaluate the effect of calcium supplementation on bone acquisition in adolescent white girls. DESIGN: A randomized, double-blind, placebo-controlled trial of the effect of 18 months of calcium supplementation on bone density and bone mass. SUBJECTS: Ninety-four girls with a mean age of 11.9 + 0.5 years at study entry. SETTING: University hospital in a small town. INTERVENTIONS: Calcium supplementation, 500 mg/d calcium as calcium citrate malate; controls received placebo pills. MAIN OUTCOME MEASURES: Bone mineral density and bone mineral content of the lumbar spine and total body were measured by dual-energy x-ray absorptiometry and calcium excretion from 24-hour urine specimens. RESULTS: Calcium intake from dietary sources averaged 960 mg/d for the entire study group. The supplemented group received, on average, an additional 354 mg/d of calcium. The supplemented group compared with the placebo group had greater increases of lumbar spine bone density (18.7% vs 15.8%; P = .03), lumbar spine bone mineral content (39.4% vs 34.7%; P = .06), total body bone mineral density (9.6% vs 8.3%; P = .05), and 24-hour urinary calcium excretion (90.4 vs 72.9 mg/d; P = .02), respectively. CONCLUSIONS: Increasing daily calcium intake from 80% of the recommended daily allowance to 110% via supplementation with calcium citrate malate resulted in significant increases in total body and spinal bone density in adolescent girls. The increase of 24 g of bone gain per year among the supplemented group translates to an additional 1.3% skeletal mass per year during adolescent growth, which may provide protection against future osteoporotic fracture.  相似文献   

15.
Given the current explosion of knowledge of the genetics and molecular biology of cancer, the possibility of widespread testing for inherited predisposition to cancer has been raised. The main objective of this study was to assess the effect of inherited predisposition on cancer mortality among the National Academy of Sciences-National Research Council Twin Registry. The twins were white male United States veterans of World War II, who were born during the period 1917-1927. The follow-up period was from 1946 to 1990, and some cause of death was determined with the use of death certificates. We compared concordance for death from cancer among 5690 monozygotic twin pairs to that among 7248 dizygotic pairs. A possible effect of inherited predisposition to death from cancer was considered present if concordance for cancer mortality among monozygotic twin pairs was greater than it was among dizygotic twin pairs. Among monozygotic and dizygotic twins, a total of 1918 cancer deaths was observed. Concordance for death from cancer at all sites among monozygotic twins was higher than it was among dizygotic twins (overall rate ratio, 1.4; 95% confidence interval, 1.0-2.0). For each zygosity group, two or fewer pairs were observed to be concordant for death from cancer of a specific site, with the exception of lung cancer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To compare the relative sensitivity and specificity of bone turnover indexes for bone loss or gain in early postmenopausal women, we performed a multicenter trial in 236 menopausal women (mean age, 51 yr), who were randomized to hormone replacement therapy (HRT) or calcium supplementation (CS; 500 mg/day) for 1 yr. Two markers of bone formation, osteocalcin (OC) and bone alkaline phosphatase (BSAP), and two markers of bone resorption, urinary N-telopeptide (NTx) and urinary free deoxypyridinoline (fDpd), as well as spine and femoral neck bone mineral density (BMD) were measured at baseline and 3, 6, and 12 months after treatment. Women receiving HRT (n = 105) showed a significant increase in spine BMD (+2.5%; P < 0.0001) and hip BMD (+1.0%; P = 0.02) compared to women receiving CS, who showed a decline at both sites (-1.1%; P < 0.01). All four markers showed time-dependent decreases in women receiving HRT (P < 0.001) and no change in women receiving CS alone. When baseline indexes of turnover were stratified by quartile, there was a significantly greater increase in BMD among those with the highest NTx, OC, and BSAP levels compared to that in those with the lowest NTx, OC, and BSAP levels (P < 0.05). The highest quartile for percent change from baseline to 6 months in fDpd, BSAP, and NTx was also associated with the greatest change in spine BMD at 1 yr. Receiver operator characteristic curves for percent change from baseline to 6 months in an individual marker to 1 yr change in BMD during HRT revealed that the percent change in NTx provided the greatest discrimination between gain and loss of BMD. When subjects receiving HRT were compared by their positive or negative skeletal response at 1 yr and their baseline turnover marker, initial NTx values were significantly higher in those that gained bone than in those that lost bone (P = 0.0002). CS women in the highest quartile for NTx at baseline had significantly greater decreases in spine BMD than subjects with the lowest NTx values (P < 0.005), although this was not true for fDpd (P < 0.20). In conclusion, for early postmenopausal women there are differential responses of biochemical markers to HRT and CS. Baseline urinary NTx and serum OC were the most sensitive predictors of change in spine BMD after 1 yr of either HRT or CS. Similarly, the percent change in NTx and OC from baseline to 6 months best predicted bone gain or loss. We conclude that markers of bone formation and resorption can be used clinically to predict future BMD in early postmenopausal women.  相似文献   

17.
OBJECTIVE: To determine the efficacy and safety of vitamin D 50,000 units/week and calcium 1,000 mg/day in the prevention of corticosteroid induced osteoporosis. METHODS: A minimized double blind, placebo controlled trial in corticosteroid treated subjects in a tertiary care university affiliated hospital. The sample was 62 subjects with polymyalgia rheumatica, temporal arteritis, asthma, vasculitis, or systemic lupus erythematosus. The primary outcome measure was the percentage change in bone mineral density (BMD) of the lumbar spine in the 2 treatment groups from baseline to 36 mo followup. RESULTS: BMD of the lumbar spine in the vitamin D and calcium treated group decreased by a mean (SD) of 2.6% (4.1%) at 12 mo, 3.7% (4.5%) at 24 mo, and 2.2% (5.8%) at 36 mo. In the placebo group there was a decrease of 4.1% (4.1%) at 12 mo, 3.8% (5.6%) at 24 mo, and 1.5% (8.8%) at 36 mo. The observed differences between groups were not statistically significant. The difference at 36 mo was-0.693% (95% CI -5.34, 3.95). CONCLUSION: Vitamin D and calcium may help prevent the early loss of bone seen in the lumbar spine as measured by densitometry of the lumbar spine. Longterm vitamin D and calcium in those undergoing extended therapy with corticosteroids does not appear to be beneficial.  相似文献   

18.
The aim of this study was to investigate the effect of menopause on bone loss in the proximal femur and the lumbar spine. The rates of change in bone mineral density (BMD) were measured longitudinally by dual X-ray absorptiometry (DXA) at the femoral neck (FN), Ward's triangle (WT), and trochanter (TR) together with the lumbar spine in 81 healthy postmenopausal women (45-65 years of age) who had passed a natural menopause, 6 months to 12 years before. A significant correlation between the rate of change and interval since menopause was evidenced. The best fit of the data was a binomial function of interval since menopause at the spine, FN, and WT and a simple linear regression at TR level. At each skeletal site, the rate of bone loss (mean +/- SD) was significantly different (p<0.05) and twice as high in women who were between 6 months and 2 years postmenopausal at enrollment (FN, -1.82 +/- 1.1%; WT, -2.43 +/- 1.7%; TR, -1.12 +/- 1.7%) than in those who were beyond 5 years of menopause (FN, -0.48 +/- 0.8%; WT, -0.68 +/- 2.1% TR, 0.41 +/- 1.2%). A poor correlation (r = 0.39 - 0.42, p<0.001) was found between the rate of vertebral and that of femoral postmenopausal bone loss. This study demonstrates that menopause is associated with a rapid and transient bone loss in BMD of the proximal femur, which declines with time after 3 years. These data suggest that therapy should be initiated as early as possible after menopause to prevent bone loss.  相似文献   

19.
In order to clarify whether the long-term effect of estrogen on bone mineral density (BMD) is reinforced by low dose calcium supplements, 600-800 mg of calcium lactate was administered to postmenopausal or oophorectomized women who had been undergoing unopposed estrogen therapy for at least 2 years and whose serum calcium level was suppressed to below the normal range. To patients whose serum calcium levels had been within the normal range, the same dose of estrogen alone was continued. Changes in lumbar spine BMD before and after calcium supplementation was measured by dual-energy X-ray absorptiometry. Lumbar spine BMD decreased by -0.37% for 2 years in women treated with estrogen alone, while that of women treated with estrogen and calcium increased by 2.78% (P = 0.003). These results indicate that low dose calcium supplements potentiate the effect of estrogen in women with decreased serum calcium during long-term hormone replacement therapy.  相似文献   

20.
The purpose of this study was to evaluate whether premenopausal women's voluntary unsupervised aerobic and step training could maintain the skeletal benefits obtained by an 18-month supervised high-impact training, and if so, to what extent. Thirty women of the original 39 study subjects (i. e., persons who completed the preceding 18-month randomized training intervention and who volunteered to continue the training on their own for a further 8 months) and 19 women of the 45 original control subjects (i.e., persons who volunteered to continue as controls) were included. The study group trained an average of twice per week and the training consisted of regular aerobic and step classes provided by local fitness centers. Areal bone mineral density (BMD, g/cm2) was measured from the lumbar spine, femoral neck, trochanter area of the femur, distal femur, patella, proximal tibia, calcaneus, and dominant distal radius at baseline and after 18 and 26 months. During the extended 8-month follow-up, the BMD of the study group increased more at the femoral neck (the intergroup change was +0.9% at 18 months and +2.8% at 26 months, p = 0.004 for the change between 18 and 26 months) and remained at the 18-month level at the distal femur, patella, proximal tibia, and calcaneus. In these sites, the statistically significant changes during the entire 26 months of training were 1.7-4.0% in the training group as compared with the changes of -0.9-1.5% in the control group. In the lumbar spine, BMD decreased from the 18-month level in both groups. In conclusion, the significant BMD increases that were obtained by supervised 18-month high-impact training were effectively maintained with subsequent unsupervised regular aerobic and step classes (twice per week). The finding emphasizes the effectiveness and feasibility of self-controlled aerobic and step exercises in the primary prevention of osteoporosis among healthy premenopausal women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号