共查询到20条相似文献,搜索用时 0 毫秒
1.
为了提高三维点云深度网络分类模型对全局特征的提取与表达能力,增强模型对噪声干扰的鲁棒性,提出可迁移应用于不同分类网络的竞争性注意力融合模块,学习多层级特征的全局表征和中间特征内在相似度,对中间特征通道权值重分配. 在基准网络Pointnet++和PointASNL中嵌入所提模块并进行实验,结果显示:所提模块具有独立性和可迁移性,聚焦更利于三维点云形状分类的核心骨干特征. 与基准网络相比,所提模块在保持分类精度稳定不下降的情况下,模型对点云扰动噪声、离群点噪声和随机噪声的抗干扰能力增强,在随机噪声数分别为0、10、50、100、200的情况下,准确度分别达到93.2%、92.9%、85.7%、78.2%、63.5%. 与传统滤波方法相比,端到端的学习减少预处理步骤和人工干预过程,同时具有更优的抗噪性能. 相似文献
2.
针对基于3D卷积的点云实例分割算法的分割结果离散化、特征利用不充分的问题,提出具有注意力机制(KNN)模块和改进的实例语义关联(ASIS)模块的点云实例分割模型.模型以体素作为输入,通过3D子流形稀疏卷积提取点特征.利用具有注意力机制的KNN算法,对语义、实例特征空间的特征进行重组,以缓解提取到的特征离散化问题.通过改进的ASIS模块,对重组后的语义、实例特征相互关联以增强点特征间的区分度.对于语义特征与实例嵌入,分别应用Softmax模块、MeanShift算法获得语义与实例分割结果,采用S3DIS公开数据集对所提模型进行验证.实验结果表明,所提模型的实例分割结果在平均实例覆盖率(mCov)、平均加权实例覆盖率(mWCov)、平均精确率(mPrec)、平均召回率(mRec)衡量指标上分别达到了53.1%、57.1%、65.2%与52.8%;语义分割结果在平均交并比和总体精度上分别达到了61.7%、88.1%.消融实验结果验证了所提模块的有效性. 相似文献
3.
针对大规模点云具有稀疏性,传统点云方法提取上下文语义特征不够丰富,并且语义分割结果存在物体边界模糊的问题,提出基于边界点估计与稀疏卷积神经网络的三维点云语义分割算法,主要包括体素分支与点分支.对于体素分支,将原始点云进行体素化后经过稀疏卷积得到上下文语义特征;进行解体素化得到每个点的初始语义标签;将初始语义标签输入到边界点估计模块中得到可能的边界点.对于点分支,使用改进的动态图卷积模块提取点云局部几何特征;依次经过空间注意力模块与通道注意力模块增强局部特征;将点分支得到的局部几何特征与体素分支得到的上下文特征融合,增强点云特征的丰富性.本算法在S3DIS数据集和SemanticKITTI数据集上的语义分割精度分别达到69.5%和62.7%.实验结果表明,本研究算法能够提取到更丰富的点云特征,可以对物体的边界区域进行准确分割,具有较好的三维点云语义分割能力. 相似文献
4.
三维人体分割技术是数字化服装、数字化人体测量、计算机动画等应用中最关键的技术,但当前存在着分割不是很精确的缺点。针对头部分割不精确的缺点,对基于点云数据的三维人体头部分割技术进行了研究,提出以最大距离法和近似凸包边法定位分割特征点和分割切面,并引入分割切面倾斜角实施头部分割。实验结果表明:提出的分割方法提高了头部分割的实时性和精确性。 相似文献
5.
对于脑胶质瘤图像分割这类密集预测的医学影像分割任务,局部和全局依赖关系都是不可或缺的,针对卷积神经网络缺乏建立全局依赖关系的能力,且自注意力机制在局部细节上捕捉能力不足等问题,提出了基于卷积和可变形注意力的脑胶质瘤图像分割方法。设计了卷积和可变形注意力Transformer的串行组合模块,其中卷积用于提取局部特征,紧随其后的可变形注意力Transformer用于捕捉全局依赖关系,建立不同分辨率下局部和全局依赖关系。作为一种CNN-Transformer混合架构,所提方法不需要任何预训练即可实现精准的脑胶质瘤图像分割。实验结果表明:所提方法在BraTS2020脑胶质图像分割数据集上平均Dice系数和平均95%豪斯多夫距离分别为83.56%和11.30 mm,达到了与其他脑胶质瘤图像分割方法相当的分割精度,同时降低了至少50%的计算开销,有效提升了脑胶质瘤图像分割的效率。 相似文献
6.
进入新世纪,科技的发展造就了大数据的爆发式增长,这为基于深度学习方法来研究地质学问题奠定了基础。卷积神经网络已被用于地质填图,但卷积操作关注的是数据空间维度的特征信息,无法建模不同通道维度之间的依赖关系。为了发掘不同通道的输入数据和特征图之间的关联性,提升智能地质填图的效果,本文在全卷积神经网络Unet中引入通道注意力模块——挤压—激励模块(Squeeze and Excitation Block, SE Block),提出了一种新网络SE—Unet,并将该网络应用于湖南省鲤鱼塘地区的1∶5万智能地质填图。实验结果表明,相比于Unet, SE—Unet智能地质填图的总体精确度由81.58%提高到了83.72%,可视化结果显示,两种原来难以识别的地质单元被大致识别出来。这验证了通道注意力机制能够提升网络的学习和表征能力,也说明了本方法对于提升智能地质填图效果的可行性与有效性。 相似文献
7.
点云作为一种重要的三维数据类型,在自动驾驶、机器人、虚拟及增强现实等人工智能方面应用广泛。点云语义分割是点云处理中的关键任务,旨在将点云中的每个点分配给特定的语义类别。综述了国内外基于深度学习的点云语义分割的研究进展。首先,总结了点云语义分割中常用的开源数据集,并介绍了间接基于点云和直接基于点云的深度学习处理方法及其应用进展。此外,给出了这些方法的实验结果,并对他们进行了简要对比。最后,对当前点云语义分割所存在的问题进行了探讨,并提出了未来的研究发展方向。 相似文献
8.
9.
为了更加充分地提取调制信号特征,构建一种多通道残差网络与注意力机制协作的调制分类方法。首先设计一个各通道均不相同的多通道结构,确保提取的信号特征更加多样;其次,将每个通道提取的特征利用concatenate层进行融合,增强描述信号特征;之后,结合残差网络的优势,显著增加网络深度,捕获更具代表性的特征,同时缓解深层网络带来的梯度消失问题;最后,为了使提取的特征更加易于分类,引入注意力层,对提取特征重新校准,以捕获更加关键的特征,增加信号分类准确率。在公共数据集RadioML 2016.10 b上进行实验。仿真结果表明,该网络的分类性能优于许多文献中的分类器,当信噪比14 dB时,分类精度达到93.23%,证明了此网络的可行性与有效性。 相似文献
10.
11.
高光谱遥感影像中隐含了不同地物的光谱特征,高光谱地物分类成为了遥感领域的一个研究热点。高光谱数据存在维度灾难以及训练样本标签过少等问题,进而影响了其分类精度。针对此问题,文章提出一种空-谱特征融合的增强图注意力网络高光谱影像分类方法,即从高光谱数据中获得初始的空-谱特征作为图的节点属性,并以节点的相邻关系构建图结构;将空-谱特征初步融合的高光谱图数据作为输入,并通过增强图注意力来提取节点的空-谱特征;以深度融合的空-谱特征来实现精准的高光谱地物分类。经在龙口和汉川数据集上的实验测试结果表明:这一方法能够有效提取深度融合的空-谱特征,总体分类精度分别达到99.62%和95.45%,实现了高光谱地物的精准分类。 相似文献
12.
针对遥感图像目标尺度变化较大、分割不够准确的问题,提出了一种融合多尺度特征注意力卷积神经网络(CNN)的图像分割方法。该方法基于卷积块注意力模块提出了改进的有效注意力模块(ECBAM)。在通道注意力模块中加入空洞卷积以降低池化操作造成的特征损失,并在通道注意力模块后添加卷积层对通道注意力特征映射进行特征融合。然后,基于ECBAM设计了一种编码解码架构的卷积神经网络模型ECBAM-CNN,其中编码器主要由卷积层、ECBAM和空洞空间金字塔池化模块组成,解码器主要由卷积层和ECBAM组成,并且采用跳跃连接将编码阶段的多尺度信息融合到解码器。实验表明,提出的方法无需预训练和后处理,与SegNet等前沿方法相比取得了更好或相近的分割准确度,在DLRSD和WHDLD测试集上的mIoU分别为67.3%和62.0%。 相似文献
13.
在点云处理领域中深度学习是一种主流的方法,但是现有方法对三维点云的局部结构信息利用不够充分,对局部形状感知较差。为此,提出了一种基于改进PoinetNet的三维点云处理模型,本模型将位置自适应卷积引入到PointNet中。位置自适应卷积采用动态的方式组合权重库中的权重矩阵来构造核函数,其中权重矩阵的系数是通过位置相对系数网络从点与点相对位置自适应学习得到的。通过此方式构建的核函数,可以更好地解决点云数据的不规则性和无序性问题。位置自适应网络在三维物体分类实验上分类准确率相较于PointNet提升3.60%,在三维物体零件分割实验上平均交并比相较于PointNet提升2.20%,在三维场景语义分割实验上平均交并比相较于PointNet提升9.14%。 相似文献
14.
卷积神经网络(Convolutional Neural Networks,CNN)无法判别输入文本中特征词与情感的相关性.因此提出一种双注意力机制的卷积神经网络模型(Double Attention Convolutional Neural Networks,DACNN),将词特征与词性特征有效融合后得到本文的特征表示,确定情感倾向.本文提出局部注意力的卷积神经网络模型,改进卷积神经网络的特征提取能力,采用双通道的局部注意力卷积神经网络提取文本的词特征和词性特征.然后使用全局注意力为特征分配不同的权重,有选择地进行特征融合,最后得到文本的特征表示.将该模型在MR和SST-1数据集上进行验证,较普通卷积神经网络和传统机器学习方法,在准确率上分别取得0.7%和1%的提升. 相似文献
15.
《吉林大学学报(工学版)》2017,(5):1387-1394
为解决智能车辆环境感知模块在地面分割过程中存在的分割不足和过度分割问题,提出了一种基于三维不规则点云的地面分割算法。首先,采用多标签的马尔科夫随机场理论构建极坐标系网格地图,根据网格单元的不同点云分布类型建立多种测量代价函数模型;然后,整合局部平滑性和斜坡假设,建立平滑性代价函数模型,保证网格间地面高度的不连续性;最后,利用环状置信传播算法进行多次消息传递,迭代估计每个网格单元内最大信任的地面高度值,实现地面点与非地面点的分割。通过对简单粗糙路面场景和复杂斜坡场景中采集的不规则点云数据集进行实验分析,验证了本文算法在不同环境下分割地面点与非地面点的准确性和鲁棒性。 相似文献
16.
道路交叉口是道路交通网的重要组成部分,其位置和类型是高精地图、自动驾驶等应用服务的基础数据.目前研究多关注车载激光点云的道路边界提取,较少关注道路交叉口类型识别.为此,本文提出一种基于动态图神经网络的道路交叉口分类方法.首先分析地面超体素的几何和空间分布差异进行提取道路边界点;然后计算道路边界点曲率,利用滑动窗口中曲率... 相似文献
17.
为了提高高光谱图像在有限训练样本下的分类性能,提出了一种基于双池化注意力机制的高光谱图像分类网络(DPAMN).首先,采用三维卷积提取高光谱图像的空间和光谱浅层信息.其次,为了增强网络的特征提取能力,在DPAMN中引入了一种双池化注意力机制.最后,在网络的深层引入三维卷积密集连接模块,该模块不仅能够充分提取高光谱图像的空间和光谱特征,同时还能提高特征的判别能力.实验结果表明,在Indian Pines、University of Pavia、Salinas以及Houston 2013数据集上分别取得95.45%、97.11%、95.30%以及93.71%的整体平均精度,与目前主流的已有先进方法相比,所提出的方法在4个数据集上均有较大提升,表明所提方法具有较强的泛化能力. 相似文献
18.
采用注意力模型研究交通流量预测问题,提出并设计一种基于时间异质性结合噪声滤除的交通流量预测方法,有效预测美国加州高速公路未来1 h的交通流量。在构建预测方案过程中,分析交通流量数据特性,分别针对相对时间间隔和绝对时间进行建模,挖掘时间异质性;使用基于节点固有属性的动态噪声滤除方法,解决空间中噪声干扰问题;对预测模型的工作性能和结果进行详细分析,并结合基线模型进行对比评价。试验结果表明,挖掘时间异质性并动态滤除噪声的改进注意力机制预测模型具有一定的预测精度。 相似文献
19.
20.
针对肺结节分类方法仍存在缺乏推理过程的可解释性和判别性特征表示等问题,提出了一个基于移动窗口注意力机制和编码解码器肺结节分类方法(SWAC)来对图像进行特征提取。该模型结合了卷积神经网络(CNN)和移动窗口注意力机制的优势,通过关注结节分类所必需的区域进行结节分类,有效地提取了结节的浅层特征和深层特征。该卷积神经网络引入了Focal损失函数,对网络主干进行特征约束来关注难分类样本,以此提升网络的判别表征能力。在LIDC-IDRI数据集上通过消融实验分析了该方法中各部分的贡献和影响,结果表明,SWAC分类方法具有优异的性能。 相似文献