首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着遥感图像分辨率的不断提高,遥感图像目标检测技术获得了更广泛的关注。针对遥感图像中背景复杂噪声多、目标方向任意且目标尺寸变化大等问题,提出一种基于多层级局部自注意力增强的遥感目标检测算法。首先,在Oriented R-CNN骨干网络中引入Swin Transformer特征提取模块,使用具有移位窗口操作和层次设计的Transformer模块对特征提取的语义信息进行多层级局部信息建模。其次,使用Oriented RPN生成高质量的有向候选框。最后,将高斯分布之间的Kullback-Leibler divergence(KLD)作为回归损失函数,使得参数梯度能够根据对象的特征得到动态调整,更加准确地进行检测框的回归。所提算法在DOTA数据集和HRSC2016数据集上的平均精度均值(mAP)分别达77.2%和90.6%,和Oriented R-CNN算法相比,mAP分别提高了1.8个百分点和0.5个百分点。实验结果表明,所提算法能够有效地提高遥感图像目标检测精度。  相似文献   

2.
针对遥感图像由于具有背景复杂和目标方向多变、尺度变化剧烈的特性导致目标检测精度较低的问题,文中提出了一种基于瓶颈注意力的遥感图像目标检测算法R-YOLOv5。该算法通过主干特征提取网络、瓶颈注意力、旋转框和损失函数的改进来加强网络对关键目标的特征提取能力,并在训练阶段采用了Mosaic和Mixup的TTA数据增强策略来弱化遥感图像复杂的背景信息对检测的影响。实验结果表明,R-YOLOv5的mAP达到了94.7%,与原始YOLOv5相比,提高了14.1%,可以有效提高遥感图像目标检测精度。  相似文献   

3.
随着技术的不断发展,遥感技术被广泛应用于地图绘制、资源勘探以及灾害预警等领域。遥感目标检测是进行遥感图像解译的关键步骤。传统的目标检测算法在对遥感目标进行检测的过程中存在目标漏检、检测精度低以及无法解决小目标检测等问题。提出一种基于多尺度特征增强卷积神经网络(MSFE-CNNs)的遥感目标检测算法,通过对不同卷积层特征进行增强和融合,使得模型具有更快的训练速度和更高的检测精度。所提算法结合特征提取模块、特征增强模块、自注意力机制和金字塔特征注意力机制。特征提取模块对输入的海量遥感数据进行特征提取,获取不同类别目标的多尺度特征;特征增强模块用于增强不同卷积层特征相关性,强化模型的学习能力和特征之间的非线性关系;自注意力机制和金字塔特征注意力机制主要解决传统卷积神经网络无法获取小尺度目标特征的问题。为了验证所提算法的有效性,在DOTA数据集上进行不同方法对比,实验结果表明所提算法在检测精度和训练速度上均优于现有基于深度学习的目标检测算法。  相似文献   

4.
5.
为解决在卫星遥感图像的多尺度目标检测中出现的背景混乱、小目标检测精度低、漏检率高等问题,提出一种用于卫星遥感图像的多尺度目标检测算法。在主干网络中使用通道和空间注意力模块,并重新设计特征融合网络,实现上采样-下采样-上采样的多重融合,并在其中加入通道权重参数,让网络更加关注重要的层次,实现不同层次特征信息的充分利用,使细节特征信息得到增强。在DIOR数据集中的实验结果表明,所提算法不仅显著提升对小目标的检测效果,而且提高对复杂场景中目标的检测精度,与YOLOv5m相比,对部分较小或者复杂的目标检测效果提升明显,精度提升4.5个百分点以上,整体精度提升3.1个百分点。  相似文献   

6.
基于多级滤波的复杂背景下多尺度小目标检测   总被引:1,自引:0,他引:1  
针对精确制导系统中目标尺度的不确定性带来的检测问题,在分析原始多级滤波器结构与传递函数频率特性的基础上,适当改进了多级滤波的结构,导出多个滤波结果,并提出了基于融合多级输出滤波结果的多尺度小目标检测算法.实验结果表明,该算法可以在没有目标尺度先验信息的情况下自适应地检测出多个小目标.  相似文献   

7.
8.
楼哲航  罗素云 《红外技术》2022,44(11):1167-1175
红外图像因为存在噪声大、对比度不佳等问题,容易导致目标检测时的精度降低,本文结合YOLOX和Swin Transformer,提出了一种改进的YOLOX的模型。改进的模型采用Swin Transformer替换YOLOX中的CSPDarknet主干提取网络,减少YOLOX中Neck和Head部分的激活函数以及标准化层,以提高特征的提取能力,优化网络结构。对改进的模型在艾瑞光电数据集和FILR数据集上均进行了测试,实验结果显示,改进后的YOLOX网络,在两个数据集上的平均检测精度都有明显提升,更加适合红外图像的目标检测。  相似文献   

9.
红外小目标检测因其探测距离远、抗干扰能力强等特点,在空中目标探测与跟踪系统中得到了广泛的应用.针对目前红外小目标检测算法在复杂背景下检测准确率低、虚警率高等缺点.提出了一种基于多尺度特征融合的端到端红外小目标检测模型(multi-scale feature fusion single shot multibox det...  相似文献   

10.
贾亮  林铭文  戚丽瑾  谈瑾 《半导体光电》2024,45(3):501-507, 514
针对无人机航拍图像背景复杂、小目标占比高且分布不均导致的现有算法精度不佳等问题,提出了一种面向无人机航拍图像的多尺度目标检测网络VTO-YOLOv8。首先,采用WIoU v3作为边界框回归损失函数,并使用明智的梯度分配策略,这一策略将使网络更加关注普通质量样本,从而提高其定位能力;其次,设计四层T-BiFPN结构,加强浅层特征和深层特征的融合;此外,设计C2f-DBB多分支模块,在不增加计算量的前提下,提升检测性能;同时,使用聚焦调制模块,加强不同尺度信息的交互。实验结果表明,网络在Visdrone2019数据集上相较基准模型在mAP50和mAP指标上分别提高了9.0%和5.9%,同时参数降低了22.6%,可更好地应用于无人机航拍目标检测中。  相似文献   

11.
针对遥感图像在复杂背景下因特征提取和表达能力不足而存在漏检和检测效果不佳的问题,提出一种优化特征提取网络的YOLOv4算法模型。该改进模型引入了一种新的Dense-PANet结构以获取更高的分辨率特征,并通过在特征提取网络中嵌入注意力机制以适应遥感图像因视野范围大而导致复杂背景下小目标漏检和检测效果不佳的问题。为了证明本文所提方法的有效性,针对DIOR遥感数据源进行了对比实验,结果表明,本文算法平均准确率(mean average precision,mAP)为86.55%,相比原算法提高了2.52%,较YOLOv3、RetinaNet提高了6.58%、14.09%,验证了所改进算法的有效性。  相似文献   

12.
为提升YOLOv5算法对遥感图像密集目标的检测精度并改善漏检问题,提出了一种改进的YOLOv5遥感目标检测算法。改进方法首先采用7*7卷积模块替换骨干网络中Focus模块以增大模型感受野;其次,在保证与原模块效果相同的情况下使用SPPF以提升检测速度;最后,引入SIOU损失函数,利用边界框回归之间的向量角度来重新定义损失函数,有效提高了检测的准确性。实验结果表明,针对公开的NWPU VHR-10遥感数据集,所提改进算法在保持与原算法相同检测速度的情况下,检测精度提高了3.5%。  相似文献   

13.
基于小波多尺度图像配准的运动小目标检测   总被引:2,自引:2,他引:2  
探讨了一种红外图像序列中独立运动小目标检测的新方法。通过一种鲁棒的小波多尺度图像配准过程消除主场或背景运动的影响。同时,利用改进的Fisher算法及小波变换对低频的图像进行分割,最终将目标从背景中分离出来,并对配准后分割的图像差分,获得目标运动轨迹。实验表明了该方法的有效性。  相似文献   

14.
雷达目标检测对海上信息处理具有重要意义,目前提出的检测方法在召回率和精度上都难以满足海上检测要求。为了解决上述问题,提出基于多尺度特征的雷达海上目标检测方法。通过X波段非相参脉冲体制导航雷达采集数据,在完成预处理后检验数据集,提取雷达数据。分析杂散噪声,确定噪声范围,根据平均强度和灰度值的差值实现归一化处理。对目标进行归一化分析,融合多尺度特征实现目标选择,完成目标检测。实验结果表明,基于多尺度特征融合的雷达海上目标检测方法召回率能够在短时间内达到90%以上,精度在95%以上,能够很好地提取海上目标信息。  相似文献   

15.
目标识别是合成孔径雷达(Synthetic Aperture Radar,SAR)图像解译的重要步骤。鉴于卷积神经网络(Convolutional Neural Network, CNN)在自然图像分类领域表现优越,基于CNN的SAR图像目标识别方法成为了当前的研究热点。SAR图像目标的散射特征往往存在于多个尺度当中,且存在固有的噪声斑,含有冗余信息,因此,SAR图像目标智能识别成为了一项挑战。针对以上问题,本文提出一种多尺度注意力卷积神经网络,结合多尺度特征提取和注意力机制,设计了基于注意力的多尺度残差特征提取模块,实现了高精度的SAR遥感图像目标识别。该方法在MSTAR数据集10类目标识别任务中的总体准确率达到了99.84%,明显优于其他算法。在测试集加入4种型号变体后,10类目标识别任务中的总体准确率达到了99.28%,验证了该方法在复杂情况下的有效性。  相似文献   

16.
针对复杂任务场景中,目标检测存在的多尺度特征学习能力不足、检测精度与模型参数量难以平衡的问题,提出一种基于CSE-YOLOv5(CBAM-SPPF-EIoU-YOLOv5,CSE-YOLOv5)模型的目标检测方法。模型以YOLOv5主干网络框架为基础,在浅层引入卷积块注意力机制层,以提高模型细化特征提取能力并抑制冗余信息干扰。在深层设计了串行结构空间金字塔快速池化层,改进了统计池化方法,实现了由浅入深地融合多尺度关键特征信息。此外,通过改进损失函数与优化锚框机制,进一步增强多尺度特征学习能力。实验结果显示,CSE-YOLOv5系列模型在公开数据集RSOD、DIOR和DOTA上表现出良好的性能。m AP@0.5的平均值分别为96.8%、92.0%和71.0%,而m AP@0.5:0.95的平均值分别为87.0%、78.5%和61.9%。此外,该模型的推理速度满足实时性要求。与YOLOv5系列模型相比,CSE-YOLOv5模型的性能显著提升,并且在与其他主流模型的比较中展现出更好的检测效果。  相似文献   

17.
针对遥感目标检测中检测速度慢,网络计算量大的问题,提出一种基于DN-YOLOv5的遥感目标快速检测方法。目标检测锚框采用K-means++重新聚类,以减少网络的计算量;修改算法主干网络部分的CSP1_X模块以减少参数量,并在主干网络进行双密集连接,加强卷积操作对特征的利用率;将算法模型中的CBL模块的Leak ReLU激活函数替换成H-swish激活函数,以提高网络检测速度。将快速目标检测方法 DN-YOLOv5在公开的DIOR遥感数据集上进行验证。结果表明,改进后的快速检测方法,模型大小为48 MB,降低了约47.2%,推理时延为33.8 ms,推理加速了约39%。  相似文献   

18.
针对复杂任务场景中,目标检测存在的多尺度特征学习能力不足、检测精度与模型参数量难以平衡的问题,提出一种基于CSE-YOLOv5(CBAM-SPPF-EIoU-YOLOv5,CSE-YOLOv5)模型的目标检测方法。模型以YOLOv5主干网络框架为基础,在浅层引入卷积块注意力机制层,以提高模型细化特征提取能力并抑制冗余信息干扰。在深层设计了串行结构空间金字塔快速池化层,改进了统计池化方法,实现了由浅入深地融合多尺度关键特征信息。此外,通过改进损失函数与优化锚框机制,进一步增强多尺度特征学习能力。实验结果显示,CSE-YOLOv5系列模型在公开数据集RSOD、DIOR和DOTA上表现出良好的性能。m AP@0.5的平均值分别为96.8%、92.0%和71.0%,而m AP@0.5:0.95的平均值分别为87.0%、78.5%和61.9%。此外,该模型的推理速度满足实时性要求。与YOLOv5系列模型相比,CSE-YOLOv5模型的性能显著提升,并且在与其他主流模型的比较中展现出更好的检测效果。  相似文献   

19.
现有多光谱遥感影像目标检测算法大多依赖于结构化背景模型和先验信息,背景复杂化和先验信息匮乏将导致高虚警率的检测结果。受昆虫视觉系统中小目标检测神经元的启发,跳出传统研究思路,提出多光谱遥感影像小目标仿生检测模型及相应的目标检测方法。该方法利用神经元非线性滤波特性对突变信号的敏感性,在局部区域内通过背景纹理抑制和目标边缘增强实现目标检测。实验结果表明该方法在高复杂度背景条件下获得较为稳定的低虚警率检测效果。同时该算法可以较好地平衡背景复杂度和空间分辨率之间的矛盾关系,相比现有检测算法还具有原理简单、易于实现等特点。  相似文献   

20.
为了解决点状小目标传统建模检测算法易受小目标自身暗淡呈点状的影响,在检测过程中小目标丢失或背景信息被误检成目标的问题,采用一种更加有效的多尺度点状小目标建模算法,对背景和可疑目标进行建模,得到了可疑目标图像。使用一种阈值分割算法,将真实目标从可疑目标中提取出来,进行了理论分析和实验验证。结果表明,该算法在同一数据集下,相对其它算法检测到点状小目标的轨迹更加接近真实轨迹。该研究对提高小目标检测效果的精度是有帮助的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号