首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对边缘设备计算和存储能力差的问题,本文对传统YOLOv5模型中用于特征提取的主干网络CSPDarkNet53进行轻量化处理,提出了一种轻量化MPE-YOLOv5手势识别算法,以实现模型在低功耗边缘设备上的部署;针对轻量化模型提取特征较少而导致的难以识别大尺度变换目标和微小目标问题,对M-YOLOv5网络设计添加有效通道注意力机制(efficient channel attention, ECA),以缓解因特征通道减少而导致的高层特征信息丢失的问题;同时增加针对微小目标的检测层,提高对微小目标手势的敏感度;并选用EIoU作为预测锚框的损失函数,以提高模型的定位精度。本文在自制数据集和NUS-Ⅱ公共数据集上验证了MPE-YOLOv5算法有效性,并将MPE-YOLOv5算法与轻量化后的M-YOLOv5算法和原始的YOLOv5算法在自制数据集上进行了对比实验。实验结果表明,改进算法的模型参数量、模型大小和计算复杂度分别是原算法的21.16%、25.33%和27.33%,平均精度可达97.2%;与轻量化模型M-YOLOv5相比,MPE-YOLOv5能够在保持原来效率的同时,使平均精度提升8.7...  相似文献   

2.
为解决企业降低智能化成本的要求,运用低成本、低算力的硬件设备,通过深度学习中目标检测算法模型对产品进行缺陷检测。基于深度学习目标检测中的YOLOv5s网络,采用结构裁剪思想,并基于网络中的BN层对网络进行稀疏训练,将稀疏训练后的模型对应权重值较小的层进行裁剪,从而降低模型的计算参数数量以及模型文件大小,达到轻量化的效果。使用NVIDIA的加速推理框架TensorRT对训练好的裁剪模型进行层级融合,实现推理加速效果。实验结果表明:所提目标检测模型相对于原始YOLOv5s模型权重文件大小降低约70%,同时在公开数据集NEU-DET上检测精度达到了74.2%。在搭建的高性能实验台中单图推理速度相比原模型提升了11.3%,且网络没有精度损失;在低性能实验台中,所提模型相比原网络模型推理速度提升了165%,相比高性能实验台中的结果有了更显著的提升,说明所提模型在低算力硬件设备中表现优秀。再针对所提模型采用公开的潜水泵叶轮的俯视图数据集进行普适性测试,最后对所提模型采用推理加速框架TensorRT进行加速后,在高性能实验台上可以达到单图5.8 ms的推理时间。所提目标检测模型在低算力硬件设备上推理...  相似文献   

3.
车辆违法停车将会降低道路通行效率,引发交通拥堵和交通事故.传统的车辆违停检测方法参数量大且准确度低.为此,本文提出了一种使用改进的YOLOv5模型和射线法的车辆违停检测方法.首先设计了轻量化的特征提取模块,减少模型参数量;其次在模型中加入注意力机制,从通道维度和空间维度增强模型的特征提取能力,保证模型精度;接着使用混合数据增强丰富数据集样本,提升复杂背景下的检测效果;然后选用EIoU作为损失函数提高模型定位能力.实验结果表明,改进后的模型均值平均精度达到91.35%,比原始YOLOv5s提升1.01个百分点,并且参数量减少35.79%.最后将改进后模型与射线法结合,在Jetson Xavier NX嵌入式平台的检测速度可以达到约28帧/s,能够实现实时检测.  相似文献   

4.
目标检测在计算机视觉中具有广泛的应用,而YOLOv5是目标检测领域中的经典模型。然而,YOLOv5的参数量较大,不适合应用于自动驾驶等领域,因此,基于YOLOv5改进了一个轻量级的目标检测模型。首先,使用ShuffleNetv2替换了原有的CSPDarknet53主干网络,从而降低了网络计算量。其次,使用轻量级增加精度的架构Stem Block。再次,在特征提取网络的末端加入了Coordinate Attention,使其更好地聚焦图像中重要信息。最后,使用二元交叉熵损失函数,突出类别互斥的差异。实验结果表明,相比于YOLOv5方法,改进的模型mAP只降低0.08,fps达到了91。因此改进的模型在大幅度降低参数和计算量的同时,取得了理想的检测精度。  相似文献   

5.
6.
针对现有的草莓检测算法模型参数量大、准确率低、实时性差等问题,提出一种改进型YOLOv5草莓检测算法。算法基于YOLOv5模型,骨干网络引入GhostConv和C3Ghost模块进行参数量压缩,构造轻量化模型;加入Cutout增强数据,增加训练样本的多样性,进而提高模型的泛化能力和抗干扰能力;通过引入Gather-Excite和Transformer注意力机制加强对草莓图像重要特征的关注,从而提升检测算法在复杂环境下的识别能力。实验显示,所提算法的平均精度均值1和平均精度均值2分别为97.7%和83.5%,参数量缩减为4.01 M,推理时间为26.3 ms。改进后的算法相比原算法具有识别速度快、定位准度高以及占用内存少的优势,在满足精准采摘工作要求的前提下可以提高采摘效率。  相似文献   

7.
为解决医疗看护环境下桌面生活物品检测效果不佳、定位误差较大的问题,提出一种基于YOLOv5的改进模型。首先,在主干网络末端使用坐标注意力(coordinate attention, CA)机制,使算法能够捕获跨通道、跨方向和位置的信息,提高算法的识别精度;然后,引入GhostConv卷积减少模型参数量,使模型更加轻量化,提高检测速度;最后,使用SIoU替换原算法的定位损失函数,使定位损失计算考虑到真实框与预测框的方向差异,有助于提升模型的稳定性。在COCO数据集部分物品种类上进行多次对比实验,结果表明,与原算法相比较,改进算法的精确率和召回率分别提高了4.1%和1.3%,在交并比为0%~50%和50%~90%时的均值平均精度分别提高了2.7%和3.9%,参数量减少了16.9%,每秒传输帧数提高了0.47帧,平均定位误差在X轴方向上减小了0.29 mm、在Y轴方向上减小了0.14 mm。  相似文献   

8.
针对电厂生产作业现场光照条件受限、背景复杂这一现状,为了保障捞渣机的安全高效运行,提出了一种改进YOLOv5s的捞渣机异常状态检测方法。该方法主要是在YOLOv5s网络的基础上,引入ShuffleNet替换原有的主干网络,通过减少网络参数来实现网络的轻量化;同时在ShuffleNet中加入改进的卷积注意力模块,通过串联空间和通道注意力机制,对捞渣机刮板目标特征给予更多的关注;引入加权双向特征金字塔BiFPN和边框回归损失SIoU函数获取特征信息更为有效的特征图提升目标检测精度。研究结果表明,改进后的模型参数量显著减少,模型体积减小了15.2%,平均精确率均值mAP提升了2.2%,检测时间下降了58.0%。在确保检测准确率的同时,实现了对捞渣机异常状态的实时准确检测。  相似文献   

9.
针对无人机航拍视角下图像目标特征尺寸小且存在背景复杂、分布密集的问题,提出了一种基于YOLOv5的轻量化无人机航拍小目标检测改进算法GA-YOLO。该算法改进了Mosaic数据增强方法和网络整体结构,并增加了微小物体检测头,同时设计了轻量化的全局注意力模块和并行结构的空间通道注意力机制模块,提高了网络的全局特征提取能力和训练过程中卷积通道之间的竞争和合作关系。以4.0版本的YOLOv5s为基准,在公开无人机航拍数据集VisDrone2019-DET上实验,结果表明,改进后的模型相较于原模型,参数量下降了48%,计算量下降了26%,而mAP@0.5提高了4.9个百分点,mAP@0.5:0.95提高了3.3个百分点,有效地提高了无人机空中视角下对密集型小目标的检测能力。  相似文献   

10.
为了优化气田无人值守场站监控效果,改善低分辨率画面检测精度低、识别困难及深度学习模型在多摄像头下资源消耗严重的问题,提出一种基于YOLOv5网络的多路入侵目标检测方法.应用YOLOv5网络及Deep SORT算法分别提取目标外观及其运动特征,通过拼接画面的方式实现对显存资源的合理利用.实验结果表明,进行迁移学习后模型的mAP值可达95%,检测精度较高,模型鲁棒性良好.  相似文献   

11.
针对现有车底危险物检测模型结构复杂、参数量大、不易部署于端侧的问题,提出轻量化SG-YOLOv5s网络模型.对YOLOv5s网络的骨干和颈部进行优化改进,显著降低网络的参数量,大幅缩小模型的权重体积;在训练阶段采用Mixup数据增强,提高模型的泛化能力;采用SIoU替换边框回归损失函数CIoU,使危险物预测框更接近真实框,提高检测精度.鉴于车底危险物数据集较少的现状,利用智能小车拍摄大量车底碎片化图像,采用AutoStitch算法进行图像拼接,最终获得自建车底图像数据集.实验结果表明:在自建的9种模拟车底危险物数据集上,SG-YOLOv5s模型识别精确率为97.63%,相较于原YOLOv5s模型提升了1.26%,而参数量减少了71.27%,模型权重体积下降了71.28%,为后续识别模型的嵌入式部署提供了可能.  相似文献   

12.
针对新冠疫情期间人工检查行人口罩佩戴情况效率低下的问题,提出了基于YOLOv5网络来实现对行人口罩佩戴情况的实时检测算法。收集了2000张佩戴口罩及未佩戴口罩行人图片作为数据集,先基于COCO数据集的权重数据进行预训练,提高训练的速度和检测;再将数据集导入YOLOv5模型中进行迭代训练及测试,将所获得的最优权重文件对测试集进行验证,并把训练结果可视化展示。实验结果表明,该算法在行人密集的情况下实时检测速度也能达到62.5FPS的高准确率,满足了行人口罩佩戴实时检测的要求。  相似文献   

13.
杂草的精确识别是实现机器代替人工除草的首要前提。初生的杂草目标小,识别难度大。YOLOv5-SPD在小目标识别上有着良好的表现,但在稳健性及准确性上还有待提高。在YOLOv5-SPD基础上加入通道注意力机制可以加强有效特征的权重值,使网络的学习更具有针对性。同时将广义交并比(GIoU)损失函数替换成完全交并比(CIoU)损失函数,可有效解决边框重合关系问题和目标框与预测框的高宽比以及中心点之间的关系,使杂草预测框更加接近真实框。杂草数据集上的试验结果表明,改进后的网络检测精度达到70.3%,准确率达到94.1%,比原来的YOLOv5-SPD分别提高4.7%和2.8%。  相似文献   

14.
针对YOLOv5在裂缝图像目标检测中未能考虑到裂缝图像背景复杂,检测目标较小导致检测效果不佳和易出现误检漏检的问题,提出了一种改进YOLOv5的沥青路面裂缝检测方法。该算法首先将轻量级Mobilenet v3的网络作为YOLOv5的特征提取骨干网络,以降低模型复杂度并加快推理速度。同时,在网络预测端引入高效通道注意力机制,提升网络局部特征捕获和融合能力。最后,通过一个嵌入Panet模块来强化裂缝图像的多尺度特征表达能力,提高对小目标的检测效果。实验结果表明,相比于原始YOLOv5算法,改进后的YOLOv5进行沥青路面裂缝检测的平均精度提高了5.6%,模型参数量降低了86.3%,图像检测时间减少了75.8%。  相似文献   

15.
冲压件在生产过程中容易出现裂纹、划痕、起皱、凹凸点等缺陷。目前,生产线上的冲压件缺陷检测以人工检测为主,效率低,且容易造成漏检。为此,提出了一种基于改进YOLOv5模型的缺陷检测算法。为了提高缺陷部分的关注度,更好地聚焦缺陷,本文在YOLOv5模型的主干网络中引入CA注意力模块。为了进一步提升模型的精度,本文通过对比实验,将目标框损失函数改为 GIoU,提升了定位精度。实验表明,相较于原模型,改进后的YOLOv5模型精准度、召回率、mAP值均得到提升。  相似文献   

16.
基于深度属性学习的交通标志检测   总被引:1,自引:0,他引:1  
为了弥补交通标志底层图像到高层语义之间的鸿沟,本文引入交通标志的形状、颜色、图案内容三种视觉属性,在卷积神经网络(Convolutional neural network,CNN)中加入属性学习(Attribute learning)约束,同时进行交通标志属性学习和分类学习,提出了一种基于深度属性学习的交通标志检测方法。并在公开数据集Sweden traffic sign detection dataset(STSD)和German traffic sign detection dataset(GTSD)上进行的实验结果表明,该方法能够有效地提高交通标志检测的准确率和召回率。  相似文献   

17.
针对目标检测中小目标误检、漏检及特征提取能力不足等问题,提出一种基于改进YOLOv5的小目标检测算法.该算法使用Mosaic-8方法进行数据增强,通过增加一个浅层特征图、调整损失函数,来增强网络对小目标的感知能力;通过修改目标框回归公式,解决训练过程中梯度消失等问题,提升了小目标的检测精度.将改进后的算法应用在密集人群...  相似文献   

18.
针对现有安全帽检测方法普遍存在的复杂场景下小目标检测效果差、容易出现错检漏检情况、 鲁棒性较低等问题,提出基于改进 YOLOv5 的安全帽检测方法。 在主干网络中添加 SimAM 注意力 机制,使模型在不额外增加参数的前提下对三维特征点的不同重要性进行表征和强化;在颈部网络 中增加小目标检测层,以丰富目标细粒度信息;使用 Decoupled-Head 代替原模型的 YOLOHead 模 块,将分类、回归任务分离进行。 实验结果表明,该方法的平均精度均值达到 93. 17%,能够满足复杂 场景下的安全帽检测要求。  相似文献   

19.
交通法规规定电动车驾驶人驾车时需要佩戴安全头盔,常用检测算法针对安全头盔这类小目标进行检测时存在漏检的问题。鉴于此,提出一种基于改进YOLOv5s的电动车驾驶人头盔佩戴检测算法,简称为HWD-YOLOv5s算法。该算法以深度学习框架YOLOv5s为基础,改进原始模型特征提取部分的下采样方法和特征融合方法,并修改边框损失函数GIOU的计算方法。通过多场景下数据采集获得11 370张图片以制作安全头盔数据集,并在自制数据集上采用HWD-YOLOv5s算法及其他主流算法进行小目标检测的对比实验。实验结果表明:与YOLOv5s算法相比,HWD-YOLOv5s算法在准确率、召回率、平均精度三个方面分别提升0.4%、1.1%、0.2%;检测速度能够达到实时检测要求。  相似文献   

20.
针对复杂工程场景常用的行人检测方法(尤其在小目标检测方面)精度低、复杂度高的问题,提出一种基于YOLOv5网络的改进识别方法。在骨干网络与颈部网络引入ECA注意力机制,提升模型对通道特征的关注度以抑制背景噪声;使用加权双向特征金字塔结构BIFPN对颈部网络进行修改,加强模型对不同尺度特征融合;使用Ghost模块替换骨干网络与颈部网络的部分卷积,减少模型参数、缩小体积。结果表明:提出的改进模型检测精度达到了88.4%,同时,模型的复杂度(参数量与模型大小)仅为13.5×106与6.67 MB;与目前主流的深度学习方法相比,该算法在检测精度与复杂度上具有更好的性能,在复杂的场景下具有较好的识别效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号